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The Nature of Heteroskedasticity

• Consider our basic linear function:

E(yi) = β1 + β2xi (1)

• As before, we define the random error term as:

ei = yi − E(yi) = yi − β1 − β2xi (2)

• Equivalent model form is:

yi = β1 + β2xi + ei (3)

• Homoskedasticity:

V ar(ei|xi) = V ar(ei) = σ2, ∀i (4)

• Heteroskedasticity:

V ar(ei|xi) = σ2
i , ∀i (5)
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The Nature of Heteroskedasticity

• If random error ei is heteroskedastic, by nonrandomness of xi, yi is also

heteroskedastic
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The Nature of Heteroskedasticity

• When there is heteroskedasticity, one of the least squares assumptions is

violated. We still have that

E(ei) = 0, Cov(ei, ej) = 0 (6)

• But now, the assumption that V ar(ei|xi) = σ2 is replaced by:

V ar(ei|xi) = σ2
i = h(xi), ∀i (7)

• Here h(xi) is a function of xi.
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The Nature of Heteroskedasticity

• Food expenditure example: y = FOODEXP , x = INCOME

ŷ = 83.42 + 10.21x (8)

• The residuals are defined as:

êi = yi − ŷ = yi − 83.42− 10.21x (9)
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The Nature of Heteroskedasticity

• As the level of INCOME increases, the variation (variance) in residuals

êi increases, so we guess there exists heteroskedasticity
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The Nature of Heteroskedasticity

There are two implications of heteroskedasticity:

• The least squares estimator is still a linear and unbiased estimator, but it

is no longer the best estimator. In fact, there is another estimator with a

smaller variance;

• The usual standard errors computed for the least squares estimator are

incorrect. Thus, condence intervals and hypothesis tests that use these

standard errors may be misleading.
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The Nature of Heteroskedasticity

• What happens to the standard errors?

• Consider the model form that we originally assumed:

yi = β1 + β2xi + ei, V ar(ei) = σ2 (10)

• The variance of b2 which is the least square estimator for β2 is:

V ar(b2) =
σ2∑n

i=1(xi − x̄)2
(11)

• Now let the variances of random errors differ. That is, consider the model:

yi = β1 + β2xi + ei, V ar(ei) = σ2
i (12)

• The variance of b2 which is the least square estimator for β2 is:

V ar(b2) =

n∑
i=1

w2
i σ

2
i =

∑n
i=1[(xi − x̄)2σ2

i ]

[
∑n
i=1(xi − x̄)2]2

, wi =
xi − x̄∑n

i=1(xi − x̄)2
(13)
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Detecting Heteroskedasticity

There are two methods we can use to detect heteroskedasticity:

• Method 1: An informal way using residual charts (as in Figure 8.2, 8.3);

• Method 2: A formal way using statistical tests

Method 1:

• If the errors are homoskedastic, there should be no patterns of any sort in

the residuals;

• If the errors are heteroskedastic, they may tend to exhibit greater variation

in some systematic way (this is just one specific case);

• This method of investigating heteroskedasticity can be followed for any

simple regression (complex model still requires the use of method 2);

• In a regression with more than one explanatory variable we can plot the

residuals against each explanatory variable xki, i = 1, 2, · · · , n, k =

2, 3, · · · ,K, or against ŷi, to see if they vary in a systematic way
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The Nature of Heteroskedasticity

• As the level of the unique explanatory variable INCOME increases, the

variation (variance) in residuals êi increases, so we guess there exists het-

eroskedasticity

S. Liu (UCLA Summer School Econ 103) July 24, 2017 11 / 29



Detecting Heteroskedasticity

Method 2:

• We need to have a test based on a variance function to detect heteroskedas-

ticity;

• Consider the general multiple regression model:

E(yi) = β1 + β2x2i + β3x3i + · · ·+ βKxKi (14)

• A general form for the variance function related to the multiple

regression model above is:

V ar(yi) = σ2
i = E(e2i ) = h(α1 + α2z2i + · · ·+ αSzSi) (15)

where zsi, s = 2, 3, · · · , S are some other random variables used to explain

the heteroskedastic σ2
i (z’s may be correlated with the original explanatory

variables x’s)
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Detecting Heteroskedasticity

• Possible functions for h(xi) are:

1. Exponential function:

h(α1 + α2z2i + · · ·+ αSzSi) = exp(α1 + α2z2i + · · ·+ αSzSi) (16)

2. Linear function:

h(α1 + α2z2i + · · ·+ αSzSi) = α1 + α2z2i + · · ·+ αSzSi (17)

• Note that in this latter case one must be careful to ensure that h(xi) > 0.

• By the formula of h(xi), when will there be homoskedasticity?
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Detecting Heteroskedasticity

• When

α2 = α3 = · · · = αS = 0 (18)

we have

h(α1 + α2z2i + · · ·+ αSzSi) = h(α1) (19)

where h(α1) is a constant.

• So when α2 = α3 = · · · = αS = 0, heteroskedasticity is not present;

• Use the joint hypothesis to test whether there exists heteroskedasticity

H0 : α2 = α3 = · · · = αS = 0 (20)

H1 : At least one αs 6= 0, s = 2, 3, · · · , S (21)
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Detecting Heteroskedasticity

• Suppose we use the specific case in equation (17),

V ar(yi) = σ2
i = E(e2i ) = α1 + α2z2i + · · ·+ αSzSi (22)

• For the last equality, we can define a new multiple regression model:

e2i = E(e2i ) + νi = α1 + α2z2i + · · ·+ αSzSi + νi (23)

• We use the squares of residuals {ê2i }ni=1 as dependent variable to regress on

z’s:

ê2i = α1 + α2z2i + · · ·+ αSzSi + νi (24)

• If the multiple regression model fit the data well, which means there exists

significant relationship between ê2i and z2, z3, · · · , zS (usually functions of

x2, x3, · · · , xK), what does it imply?
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Detecting Heteroskedasticity

• Since the R2 from the new multiple regression above measures the propor-

tion of variation in ê2i explained by the z’s, it is a natural candidate for a

test statistic;

• It can be shown that when H0 is true, the sample size multiplied by R2

follows a χ2 distribution with S − 1 degrees of freedom

n×R2 ∼ χ2
(S−1) (25)

• It is important to note that the test is a large sample test, that is, it

applies only when n is large;

• Note that this method presupposes that we have knowledge of the variables

appearing in the variance function (z’s) if heteroskedasticity were true.
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Detecting Heteroskedasticity

How to set the z’s (One option is White test):

• Define the variables z’s as equal to the x’s, the squares of the x’s, and

possibly their cross-products;

• Consider the model:

E(y) = β1 + β2x2 + β3x3 (26)

• The White test without cross-product terms (interactions) specifies:

z2 = x2, z3 = x3, z4 = x22, z5 = x23 (27)

• Of course, we can further add one more interaction term:

z6 = x2x3 (28)

• The White test is performed using:

n×R2 ∼ χ(S−1) (29)
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Detecting Heteroskedasticity

Example:

• We test H0 : α2 = 0 against H1 : α2 6= 0 in the variance function σ2
i =

h(α1 + α2xi);

• First estimate ê2i = α1 + α2xi + νi by OLS method;

• Calculate measure of goodness-of-fit:

R2 = 1− SSE

SST
= 0.1846 (30)

• Suppose sample size n = 40, construct test statistic:

χ2
(1) = n×R2 = 40× 0.1846 = 7.38 (31)

• χ2 test is always one-tail (right-tail) test: in this case, the 5% critical value

is 3.84, so since 7.38 > 3.84, we reject H0 and conclude that the variance

depends on income, that is, there exists heteroskedasticity.
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Detecting Heteroskedasticity

Example: for the White test

• We estimate:

ê2i = α1 + α2xi + α3x
2
i + νi (32)

• Then S = 3, n = 40, and we test H0 : α2 = α3 = 0 against H1 : α2 6=
0 and/or α3 6= 0.

• Although it is joint hypothesis, since it is to detect heteroskedas-

ticity, we still just need to use χ2 test:

χ2
(2) = n×R2 = 40× 0.1888 = 7.555 (33)

• Given significance level α = 0.05, either by critical value χ(0.95,2) = 5.99 <

7.555 or by the calculated p-value 0.023 < 0.05, we will reject H0.

• We conclude there exists heteroskedasticity.
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Heteroskedasticity-Consistent Standard Errors

• Recall that there are two problems with using the least squares estimator

in the presence of heteroskedasticity:

1. The least squares estimator, although still being unbiased, is no

longer the best;

2. The usual least squares standard errors are incorrect, which invali-

dates interval estimates and, more generally, hypothesis tests.

• There is a way of correcting the standard errors so that our interval esti-

mates and hypothesis tests are still valid.
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Heteroskedasticity-Consistent Standard Errors

• Under heteroskedasticity:

V ar(b2) =

∑n
i=1[(xi − x̄)2σ2

i ]

[
∑n
i=1(xi − x̄)2]2

(34)

• A consistent estimator for this variance has been developed and is known

as the Whites heteroskedasticity-consistent standard errors;

• In STATA it is called robust standard errors.

• What is the straight forward way to construct such consistent estimator?
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Heteroskedasticity-Consistent Standard Errors

• If the number of explanatory variables in the original model is K, we have:

V̂ ar(b2) =
n

n−K

∑n
i=1[(xi − x̄)2σ̂2

i ]

[
∑n
i=1(xi − x̄)2]2

(35)

• Food expenditure example:

ŷ
White se

Incorrect se

= 83.42
(27.46)

(43.41)

+ 10.21
(1.81)

(2.09)

x (36)

• The two corresponding 95% confidence intervals for β2 are:

1. White:

b2 ± tcse(b2) = 10.21± 2.204× 1.81 = [6.55, 13.87] (37)

2. Incorrect:

b2 ± tcse(b2) = 10.21± 2.204× 2.09 = [5.97, 14.45] (38)
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Generalized Least Squares: Known Form of Variance

• Recall the food expenditure example with heteroskedasticity:

yi = β1 + β2xi + ei (39)

E(ei) = 0, V ar(ei) = σ2
i , Cov(ei, ej) = 0

• Now OLS estimator is no longer the best one, to develop an estimator that

is better than the OLS estimator, we need to make a further assumption

about σ2
i ;

• An estimator known as the generalized least squares (GLS) estima-

tor, depends on the unknown σ2
i ;

• We impose some structure on σ2
i : V ar(ei) = σ2

i = σ2xi.
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Generalized Least Squares: Known Form of Variance

• By assuming this structure, we can transform the model with het-

eroskedastic errors into one with homoskedastic errors:

yi√
xi

= β1

(
1
√
xi

)
+ β2

(
xi√
xi

)
+

ei√
xi

(40)

• Define the following transformed variables:

y∗i =
yi√
xi
, x∗1i =

1
√
xi
, x∗2i =

xi√
xi
, e∗i =

ei√
xi

(41)

• Our model can be written now as:

y∗i = β1x
∗
1i + β2x

∗
2i + e∗i (42)
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Generalized Least Squares: Known Form of Variance

• The new transformed error term is homoskedastic:

V ar(e∗i ) = V ar(
ei√
xi

) =
1

xi
V ar(ei) =

1

xi
σ2xi = σ2 (43)

• The transformed error term will maintain the properties of zero mean and

zero correlation between different observations;

• To obtain the best linear unbiased estimator for a model with

heteroskedasticity:

1. Calculate the transformed variables y∗i , x
∗
1i, x

∗
2i;

2. Use OLS method to estimate the transformed model.

• The estimator obtained in this way is called a generalized least squares

(GLS) estimator.
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Generalized Least Squares: Known Form of Variance

• One way of viewing the generalized least squares estimator is as a weighted-

least-square estimator;

• The difference now is: minimizing the sum of squared transformed errors

n∑
i=1

e∗i
2 =

n∑
i=1

e2i
xi

=

n∑
i=1

(
x
−1/2
i ei

)2
(44)

• That is, the errors are weighted by x
−1/2
i .
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Generalized Least Squares: Unknown Form of Variance

• Consider a more general specification of the error variance:

V ar(ei) = σ2
i = σ2xγi (45)

where γ is an unknown parameter.

• When you have unknown power, most time you need to take ln

on both sides:

ln(σ2
i ) = ln(σ2) + γln(xi) (46)

where by assumption ln(σ2) is constant, can be denoted as α1; γ is constant,

can be denoted as α2.

• Now we have the variance function as a log-linear function:

ln(σ2
i ) = α1 + α2zi = α1 + α2ln(xi) (47)

• Then we use residuals from the OLS estimation of the original model, we

estimate α1 and α2:

ln(ê2i ) = α1 + α2zi + νi, zi = ln(xi) (48)
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Generalized Least Squares: Unknown Form of Variance

• For the food expenditure data, we have:

l̂n(σ2
i ) = l̂n(ê2i ) = 0.9378 + 2.329zi + νi, zi = ln(xi) (49)

• We can obtain estimator of variance:

σ̂2
i = exp(α̂1 + α̂2zi) (50)

then transform the original model by dividing both sides by σ̂i:

yi
σ̂i

= β1

(
1

σ̂i

)
+ β2

(
xi
σ̂i

)
+
ei
σ̂i

(51)

• Theoretically the transformed error term is homoskedastic (since σ̂i
2 is

unbiased estimator of σ2
i ):

V ar(
ei
σi

) =
1

σ2
i

V ar(ei) =
1

σ2
i

σ2
i = 1 (52)
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Generalized Least Squares: Unknown Form of Variance

• To obtain a generalized least squares estimator for β1 and β2, define the

transformed variables:

y∗i =
yi
σ̂i
, x∗1i =

1

σ̂i
, x∗2i =

xi
σ̂i

(53)

• Use OLS method to estimate the transformed model:

y∗i = β1x
∗
1i + β2x

∗
2i + e∗i (54)
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