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Abstract

This paper analyzes OTC market participants’ endogeneous search intensity in

competitive equilibrium and social optimal cases. We develop a random search-and-

match model where agents (market participants) are allowed to choose and adjust their

search intensities based on two idiosyncratic states: asset position and liquidity need.

We find that: [1] in competitive equilibria with different market parameters, agents

can switch between the core and periphery on the trading network. [2] it is the social

optimal case that there is no intermediation, in the sense that no agent searches at

positive speeds on both the buy and sell sides of the market. In competitive equilibrium,

there always exist some agents over-searching and some other agents under-searching.

We also discuss related policy implications.
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1 Introduction

Over-the-counter (OTC) market played an important role in the 2008 financial crisis. Nearly

all of the securities and derivatives involved in the financial turmoil that began with a 2007

breakdown in the U.S. mortgage market were traded in OTC markets. 1 Empirical papers

have documented some common stylized facts in OTC markets, one of which is the stable

core-periphery trading network. For example, Li and Schürhoff (2014) documents a stable

core-periphery structure of dealer network in the U.S. municipal bonds market, through

constructing network centrality measures for each dealer; similar market structures are also

documented by Hollifield, Neklyudov, and Spatt (2017) for the U.S. securitizations markets,

Bech and Atalay (2010) for the federal funds market, and Di Maggio, Kerman, and Song

(2017) for the U.S. corporate bond markets.

Existence of the core-periphery trading network can be attributed to agents’ heterogeneity

in search intensity or meeting technology. In Farboodi, Jarosch, and Shimer (2017b), agents

choosing more advanced meeting technologies meet and trade with other agents at a higher

frequency, and lie closer to the core of the network. In Neklyudov (2012), meeting technology

is interpreted as trading frequency, which is a result of costly investment in customer-relations

capital, legal support and the extent of in-house expertise. However, in the current literature,

very few papers discuss the formation of core-periphery structure under the assumption that

agents endogeneously and ex-post2 choose their idiosyncratic searth intensities. In this paper,

incorporating this assumption into the model allows us to discuss: [1] whether agents with

similar fundamental characteristics will lie at the same or different position(s) on the trading

network, when market parameters change; and [2] what are social optimal search intensities

at agent level.

In this paper, we construct a search-and-match model with agents endogeneously and

ex-post choosing their search intensities, based on their idiosyncratic asset positions and

liquidity needs. Using this framework, we discuss the size of the intermediation sector,

1Randall Dodd, Markets: Exchange or Over-the-Counter, International Monetary Fund. https://www.

imf.org/external/pubs/ft/fandd/basics/markets.htm
2Here “ex-post” means whenever agents’ idiosyncratic states change, they are allowed tochange their

search intensities accordingly. In Farboodi, Jarosch, and Shimer (2017b), agents ex-ante choose their idiosyn-
cratic meeting technologies at the initial time, and each maintains a constant level of meeting technology over
time. Therefore, it is the distribution but not the agent-level meeting technologies that are endogeneously
and ex-ante determined.
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which contains agents searching and trading simultaneously on both the buy and sell sides

of the market, in the social optimal solution. In our model, the trading motive between

two randomly matched counterparties comes from the difference in their holding positions

and private valuations on the target asset. The level of a dealer’s private valuation on

the asset is proxy for the dealer’s liquidity need, and it determines the amount of flow

utility the dealer will receive at each time by holding the asset.3 Therefore, we use the

names “private valuation” and “utility type” interchangeably in this paper. Our model is

closest to Hugonnier, Lester, and Weill (2018) and Farboodi, Jarosch, and Shimer (2017b).

Hugonnier, Lester, and Weill (2018) analyzes the microstructure and trading patterns in

OTC market by considering a continuous distribution of trader’s private valuations. Also,

they maintain the assumption on homogeneous search intensity among all traders. We

follow their assumption on {0, 1} asset position, that is, agents in our model consecutively

switch between the buy side and the sell side of the market, and the trade size between

every two counterparties is constantly equal to one. Our innovation is to allow agents to

choose idiosyncratic and heterogeneous search intensities. Farboodi, Jarosch, and Shimer

(2017b) discusses the formation and welfare consequences of endogenous heterogeneity in

trader’s search intensity, more from a social planner perspective. In their model setup,

each agent’s meeting technology is invariant over time after it is chosen at initial time. It

is the whole distribution of search intensity that is endogenized. Our model discusses the

endogenous heterogeneity more from a competitive equilibrium perspective: agents choose

their current search intensity based on their current private valuation and asset position,

and we allow agents to adjust their search intensities whenever their private valuations shift

up or down and/or their asset positions change through trading with others. In other words,

there exists a one-to-one mapping between the two-dimensional states “private valuation

and asset position” and search intensity in our model.

Firstly, we show that when market parameters change, agents can “move” on the trad-

ing network to switch between the core and periphery positions, even though their private

valuations remain unchanged. We focus on competitive and stationary equilibria where the

continuous distribution of agents’ private valuation is convex and symmetric with respect

3Dealers with higher liquidity needs prefer cash to holding the risky asset, and thus their private valuations
on the asset are lower than the dealers with lower liquidity needs. This setting of trading motive is consistent
with a long and fast growing literature following Duffie, Gârleanu, and Pedersen (2005), which will be
discussed more in Section 1.1.
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to the intermediate level. Solutions in such equilibria are more interesting and consistent

with economic intuition. Specifically, we characterize the shape of search intensity policy

function separately for agents on the buy side and agents on the sell side. Then an agent’s

centrality on the trading network can be measured by her average search intensity across

the two sides.4 To show that agents switch between the core and periphery positions on the

network, we do it in the following steps: [1] we show that on the sell side, search intensity is

a strictly decreasing function of agent’s private valuation. An asset owner5 with a relatively

low private valuation searches at a higher speed than other asset owners with higher private

valuations; on the buy side, search intensity is a strictly increasing function of agent’s private

valuation, which means a nonowner with a relatively high private valuation searches at a

higher speed than other nonowners with lower private valuations. All these are consistent

with the existence of a competition effect in random search model with multiple agents: a

nonowner (owner) with an extremely high (low) valuation has a strong incentive to search

faster than others, to correct her mis-aligned asset position through trading with others. [2]

Then we characterize the trend of average search intensity among agents of different private

valuations, given different market parameters. The parameters determine how costly it is

for agents to invest in search intensity and how frequently agents’ private valuations change

to be higher or lower. We find that, in markets where searching is less costly and/or agents’

private valuations change at a lower frequency, the average search intensity is a hump-shaped

function of agents’ private valuation. The agents with intermediate-level private valuations

will on average search at a higher speed and lie close to the core of the trading network;

however, when searching is more costly and/or agents’ private valuations change at a higher

frequency, those intermediate-private-valuation agents will on average search and trade at a

lower speed than agents with extreme (very high or very low) private valuations. In other

words, those intermediate-private-valuation agents switch to the periphery of the trading net-

work, and the extreme-private-valuation agents switch to the core. [3] We calculate different

agent-level measures of market liquidity, e.g. gross and intermediation trading volumes, total

intermediation profit, intermediation profit per trade, and etc. We find that, agents choosing

4This is similar as Neklyudov (2012) who uses trading frequency as a measure of agents’ centrality on the
trading network. We will show later that agents with higher average search intensity also complete higher
total trading volume over the buy and sell sides of the market.

5Since we maintain the assumption on {0, 1} asset position, an asset owner is an agent who holds one
unit of the asset, and a nonowner is an agent who does not hold any position of the asset.
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higher average search intensity also trade higher gross volumes, combining the buy and sell

sides. This further indicates that average search intensity can be used as proxy for agents’

centrality on the trading network. Whenever an agent’s average search intensity changes

from low to high or in opposite direction, her gross trading volume will accordingly change

in the same direction. It is important to note that, for all variables of interest in this paper,

we only focus on their relative levels or trends among the agents, instead of their absolute

levels.

Secondly, we explicitly solve out the social optimal search intensity functions. The func-

tions imply it is the social optimal case that asset owners with higher-than-intermediate pri-

vate valuations and asset nonowners with lower-than-intermediate private valuations both

search at zero speed. In other words, the size of the intermediation sector is zero, since

there does not exist any agent searching at positive speeds simultaneously on both the buy

and the sell sides. Moreover, it more benefits the social welfare that agents with extremely

mis-aligned asset positions choose higher level of search intensities compared with what they

do in competitive equilibrium. Therefore, searching resources are necessarily to be trans-

ferred between agents in the social optimal case. This is consistent with the Proposition 2 in

Shimer and Smith (2001) that a decentralized competitive equilibrium in a random search

environment with multiple agents is not social optimal without taxes. These predictions also

depend on the setting of our social welfare objective function. If we define the asset owners

with higher-than-intermediate private valuations and the asset nonowners with lower-than-

intermediate private valuations as well-aligned agents, then the social level of well-alignment

will be the unique part that positively contributes to the social welfare. And the social level

of investment cost in search intensities will be the other unique part that negatively con-

tributes to the social welfare. Then it is intuitive that for well-aligned agents, it more benefits

the social welfare to make them not search at all to save the investment cost and maintain

their current asset positions, until they become mis-aligned ones due to changes in their

private valuations; for extremely-misaligned agents, it benefits the social welfare to make

them search and trade at higher speeds to reduce the social level of misalignement.6 Based

on these findings, we analytically solve out the explicit-form search intensity functions in the

social planner’s problem, and they coincide exactly with the numerical solutions. Specifi-

6The conclusion that there is no intermediation in the social optimal solution is robust to various forms
of search-cost functions. We discuss this in appendix.
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cally, in the case of linear search-cost function, we obtain a one-dimention policy measure

that a social planner can adopt to achieve the social optimal equilibrium. The social planner

only needs to identify a marginal-level private valuation for asset owners, and assign all the

asset owners whose private valuations are lower than this marginal level with the maximum

level of search intensity; correspondingly, identify another marginal-level private valuation

for nonowners, and assign all the nonowners whose private valuations are higher than this

marginal level with the same maximum level of search intensity.

Finally, we discuss the appropriate policy response to a specific form of aggregate liq-

uidity shock in our framework. The aggregate liquidity shock changes the distribution of

private valuations among the agents. With the occurence of aggregate shock, a certain pro-

portion of agents will have their valuations shifted down by some amount. We consider the

policy response as targetting on a certain group of agents to maintain those agents’ liquidity

needs as their pre-shock levels. In reality, this policy is implemented through directly in-

jecting liquidity into the financial institutions. We find that the policy targetting on agents

of higher-than-intermediate private valuations dominates the other ones in perspective of

recovering the whole market’s liquidity level. Since such group of agents will choose differ-

ent search intensities in different market environments due to the “switching between the

core and periphery on trading network”, the appropriate policy response is: in markets with

lower frictions, it more benefits the market-level liquidity to firstly inject liquidity into those

periphery agents; in markets with higher frictions, it more benefits the market-level liquidity

to firstly inject liquidity into those core agents.

Related literature

This paper contributes to the literature initiated by Duffie, Gârleanu, and Pedersen (2005)

that applies a search-and-match approach to study asset price and liquidity in OTC mar-

kets. Duffie, Gârleanu, and Pedersen (2005) focuses on a general OTC market with investors

of only two utility types and an explicit dealer sector. The interdealer market structure

is simplified to be a perfect competitive one, which maintains zero inventory position and

generates a unique interdealer transaction price. Following this paper, one strand of the

literature focuses on fully decentralized market structure, including Duffie, Gârleanu, and

Pedersen (2007), Vayanos and Wang (2007), Vayanos and Weill (2008), Weill (2008), Afonso
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(2011), Gavazza (2011), Praz (2014), Trejos and Wright (2016), Afonso and Lagos (2015),

Atkeson, Eisfeldt, and Weill (2015), Hugonnier, Lester, and Weill (2018), Üslü (2019), Far-

boodi, Jarosch, and Shimer (2017b), and etc. Another strand of literature focuses on semi-

decentralized market structure, where transactions between dealers happen in a frictionless

centralized market, and transactions between dealers and customers happen in a decentral-

ized market with search frictions, see Weill (2007), Lagos and Rocheteau (2009), Lagos,

Rocheteau, and Weill (2011), Feldhütter (2011), Lester, Rocheteau, and Weill (2015), and

Pagnotta and Philippon (2018).

Specifically, Duffie, Gârleanu, and Pedersen (2007) studies an OTC market with two

types of assets, one paying riskless dividend and the other paying risky dividend. Weill

(2008) extends by constructing a multi-asset model, and maintains the assumption that

investors’ asset positions only take values in {0, 1}. Afonso and Lagos (2015) focuses on

the market for federal funds, and assumes the loan sizes (asset positions) are elements of a

countable set. Hugonnier, Lester, and Weill (2018) allows arbitrary continuous distribution

of dealers’ utility type, and generates intermediation chains and a core-periphery trading

network, which is consistent with the empirical findings. They maintain the assumption on

exogeneous and homogeneous search intensity among dealers.

There are also papers in this literature considering agents’ heterogeneous search intensi-

ties: Neklyudov (2012) considers exogeneously heterogeneous search intensity among dealers

of two discrete valuation types; Üslü (2019) introduces ex-ante heterogeneity in meeting rates

into a fully decentralized market model with unrestricted asset holding positions; Farboodi,

Jarosch, and Shimer (2017b) consider ex-ante choice of the distribution of search intensity

at the initial time, after which each agent maintains a fixed level of search intensity over

time, even though their private valuations may change afterwards. In this paper, we allow

agents to change their search intensities whenever their state variables change.

Our model is different from Shen, Wei, and Yan (2018) who is the first to consider the

search intensity decision. They discuss the endogenous entry and exit of investors into an

OTC market based on investors’ idiosyncratic trading needs and a common search cost, which

focuses more on the extensive margin of choosing whether to search or not. Once entering the

market, investors will adopt the same level of search intensity. We instead consider agents’

intensive margin of choosing how fast to search within the market. Moreover, under the

assumption on endogeneous and ex-post search intensity, we explicitly solve out the social
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optimal one-to-one mapping between agents’ idiosyncratic states and search intensities.

This paper also relates to papers which apply network approach to explicitly model the

formation of links and bargaining processes between traders in OTC markets, instead of by

the search-and-match approach. Related work includes Babus and Kondor (2018), Malamud

and Rostek (2017), Barlevy, Alvarez, et al. (2014), Farboodi (2014), Gofman (2011), Chang

and Zhang (2018). And there are also some papers (including some papers listed above)

combing search and network characteristics, within which Atkeson, Eisfeldt, and Weill (2015)

develops a hybrid model to analyze entry and exit equilibrium conditions in the OTC market

for credit default swap. With the assumption that traders have homogeneous search intensity,

they conclude that banks with both intermediate-level risk exposure (like intermediate-level

private valuation in our model) and large size endogenously enter the OTC market and

behave as market makers to gain intermediation profit.

There are also papers focusing on alternative, other than search-intensity, mechnisms of

endogeneous intermediation, including Farboodi (2014) on bank heterogeneous risk exposure,

Neklyudov and Sambalaibat (2015) on dealers’ serving clients with different liquidity needs,

Wang (2016) on the trade-off between trade competition and inventory efficiency, Farboodi,

Jarosch, and Menzio (2017a) on dealers’ heterogeneous bargaining power, and Bethune,

Sultanum, and Trachter (2018) on private information and heterogeneous screening ability,

among others.

Finally, there has been a fast-growing literature on documenting and modeling stylized

facts in OTC asset markets. Besides the core-periphery trading network, Li and Schürhoff

(2014) also documents the positive correlation between agents’ centrality and spreads they

earn in municipal bond market, which is also termed as “centrality premium”. The cor-

relation of centrality with other statistics such as inventory, trading cost and difference in

bargaining power, etc are also discussed. While in securities market for 144a and registered

instruments, Hollifield, Neklyudov, and Spatt (2017) documents the negative correlation be-

tween agents’ centrality and spread, which is termed as “centrality discount”. Our model

also provides an explanation on the centrality premium and centrality discount, based on

agents’ switching between the core and periphery on the trading network. Other papers doc-

umenting the trading and intermediation structure of OTC markets include but not limited

to Di Maggio et al. (2017), Bech and Atalay (2010), Schoar et al. (2014), Siriwardane (2015),

and etc.
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The rest of the paper is organized as follows: Section 2 lays out the baseline model.

Section 3 defines and proves the existence of stationary equilibrium, characterizes equilibria

with different model parameters, and discusses the agents’ switching between the core and

periphery on the trading network. Section 4 analytically solves out the social optimal search

intensy functions, and discusses potential policy implications. Section 5 discusses the model’s

implication for appropriate policy response to a specific form of aggregate liquidity shock.

Section 6 concludes.

2 Model

We consider an OTC market for an asset in the form of “consol” which pays one unit of

dividend per unit time. This asset is in fixed supply s = 1
2
. There is a continuum of agents

[0, 1] who are heterogeneous with respect to utility types δ ∈ [0, 1]. Agents’ utility type

measures the amount of utility flow that they receive by holding one unit of the asset.7 In

the cross-section of agents, the cumulative distribution function of utility type is denoted

as Fδ(δ), and its probability density function is denoted as fδ(δ). Agents’ utility types can

change to be higher or lower, which happens independently across agents and happens as a

Poisson process with intensity α.

Agents randomly search and trade with each other, and consecutively switch between the

buy and sell sides. Agents have CARA instantaneous utility as u(c) = −e−γc, γ > 0, their

wealth level is denoted as W , and asset position a is restricted as a ∈ {0, 1}. Based on their

idiosyncratic states (utility type, wealth level and asset position), each agent endogeneously

chooses her own search intensity λ ∈ [0, λ̄], where λ̄ is the upper bound of all candidate

levels and is same for all agents. To maintain her search intensity as λ, an agent needs to

spend a flow cost C(λ) = c1λ
2, c1 > 0 at each time. In search-and-match process, once

two agents meet, their idiosyncratic states determine whether between them there exists a

positive trading surplus or not. If there is no positive trading surplus, the two agents depart

and continue searching for other trading counterparties; If a trade happens between the

two, the transaction price is determined by a Nash bargaining process, and the trade size is

restricted to be always one unit asset. We assume agents have the same bargaining power

7A higher value of utility type implies an agent has a higher private valuation on holding the asset due to
lower liquidity need. An agent with a higher utility type more prefers holding the asset than holding cash.
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with each other, denoted as θ = 1
2
. Specifically, after the trade is completed, the original

seller offloads her one unit asset and switches to the buy side; the original buyer takes one

unit asset into her inventory and switches to the sell side. Other model parameters are risk

free interest rate r and agents’ discount rate β.

2.1 Solutions to agent’s problem

Let U(W, δ, a) be the value function of an agent with wealth W , utility type δ and asset

position a ∈ {0, 1}. Similar as Duffie, Gârleanu, and Pedersen (2007), the agent’s problem

is:

U(W, δ, a) = sup
c,λ

Et

[
−
∫ ∞
t

e−β(s−t)e−γcsds

∣∣∣∣Wt = W, δt = δ, at = a

]
(1)

s.t.

dWt = (rWt − ct + atδt − C(λt))dt− P [(W, δt, at), (W
′, δ′t, a

′
t)]dat

lim
T→∞

e−β(T−t)Et[e
−rγWT ] = 0

C(λt) = c1λ
2
t

where P [(W, δt, at), (W
′, δ′t, a

′
t)] is a bilaterally bargained price between two randomly matched

counterparties with state variables as (W, δt, at) and (W ′, δ′t, a
′
t). dat is the bilateral trading

quantity, and dat ∈ {−1, 1}. In the baseline model, we assume the flow cost C(λ) has a

quadratic form, and satisfies C(0) = 0 and C ′(0) = 0. We will consider other functional

forms of C(λ) in the social optimal case.

By guess-and-verify approach similar as Duffie, Gârleanu, and Pedersen (2007), Hugonnier,

Lester, and Weill (2018), and Üslü (2019), we simplify the value functions as V1(δ) for asset

owners and V0(δ) for nonowners. The simplied value functions satisfy the following condi-

tions:8

8It is important to note that, in this paper, we only focus on symmetric equilibria in which all agents adopt
the same policy functions λ∗1(δ) and λ∗0(δ) to choose their optimal search intensities and form expectations
on how search intensities are distributed among all the agents.
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For ∀δ ∈ [0, 1],

rV1(δ) = max
λ1(δ)

{
δ − C(λ1(δ)) + α

∫ 1

0

(V1(δ′)− V1(δ))dFδ(δ
′)

+λ1(δ)

∫ λ̄

0

∫ 1

0

λ′

Λ0

max{4V (δ′)−4V (δ), 0}Φ0(dδ′, dλ′)

}
(2)

rV0(δ) = max
λ0(δ)

{
−C(λ0(δ)) + α

∫ 1

0

(V0(δ′)− V0(δ))dFδ(δ
′)

+λ0(δ)

∫ λ̄

0

∫ 1

0

λ′

Λ1

max{4V (δ)−4V (δ′), 0}Φ1(dδ′, dλ′)

}
(3)

where 4V (δ) = V1(δ) − V0(δ) is the reservation value of an agent with utility type δ,

Φ1(δ′, λ′) (Φ0(δ′, λ′)) is the cumulative joint measure of utility types and optimal search

intensities below (δ′, λ′) within asset owners (nonowners), Λ1 = 2
∫ λ̄

0

∫ 1

0
λ′Φ1(dδ′, dλ′) is the

weighted average search intensity among all asset owners, and Λ0 = 2
∫ λ̄

0

∫ 1

0
λ′Φ0(dδ′, dλ′) is

the weighted average search intensity among all nonowners. We use the matching technology

discussed by Mortensen (1982), Shimer and Smith (2001) and Üslü (2019). The intensity

that an agent with asset position a ∈ {0, 1} and search intensity λa contacts or is contacted

by another agent on the opposite side with asset position a′ ∈ {0, 1}, a′ 6= a and search

intensity λ′a′ is λa
λ′
a′

Λa′
+λ′a′

λa
Λa

. In this paper, we only focus on the case in which asset owners’

and nonowners’ equilibrium functions are symmetric with respect to the middle-level utility

type δ = 1
2
, therefore we automatically have Λa = Λa′ and the intensity can be simplied as

2λa
λ′
a′

Λa′
.

Then we obtain the optimal search intensities for asset owners λ∗1(δ) and nonowners λ∗0(δ)

as follows:

λ∗1(δ) =

∫ λ̄
0

∫ 1

δ
λ′

Λ0
(4V (δ′)−4V (δ))Φ0(dδ′, dλ′)

2c1

(4)

λ∗0(δ) =

∫ λ̄
0

∫ δ
0

λ′

Λ1
(4V (δ)−4V (δ′))Φ1(dδ′, dλ′)

2c1

(5)
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Proposition 1: Given the distribution of utility type with symmetric PDF fδ(δ) and the

cumulative joint measures Φ0(δ′, λ′) and Φ1(δ′, λ′), in the cross-section of agents: the optimal

search intensity chosen by asset owners λ∗1(δ) is a strictly decreasing function of utility type

δ; the optimal search intensity chosen by nonowners λ∗0(δ) is a strictly increasing function of

utility type δ; the reservation value 4V (δ) is a positive-value and strictly increasing function

of utility type δ. Proof is in Appendix B.

By Proposition 1, agents with asset positions more mis-aligned with their utility types

will choose to invest in higher level of search intensities, due to their higher gains from

searching than agents with asset positions more aligned with utility types. For example, an

asset owner with a relatively low utility type has a strong incentive to offload her current

inventory as quickly as possible, therefore she invests in a higher level of search intensity

than most other agents on the sell side. Once offloading her inventory position to others and

if her utility type remains unchanged (i.e. still at a low level), the agent will switch to the

buy side and invest in a relatively lower level of search intensity than most other agents on

the buy side.

The monotonic properties of the search intensity and reservation value functions

(λ∗1(δ), λ∗0(δ),4V (δ)) further simplifies the optimal conditions of agent’s problem,9 and com-

bines the two HJB equations (4) and (5) to the single (6) below.

r4V (δ) = δ + C(λ∗0(δ))− C(λ∗1(δ)) + α

∫ 1

0

(4V (δ′)−4V (δ))dFδ(δ
′) (6)

+λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

(4V (δ′)−4V (δ))φ0(δ′)dδ′ − λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (δ′))φ1(δ′)dδ′

where

λ∗1(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0
(4V (δ′)−4V (δ))φ0(δ′)dδ′

2c1

(7)

9Specifically, [1] the increasing reservation value4V (δ) simplifies the intergral over the full range of utility
types, which represents the agent’s gains from searching, to be an integral over a subset of utility types. And
the subset correlates with the current agent’s utility type; [2] since there is a one-to-one mapping between
utility type and optimal search intensity on either the buy or sell side, each agent’s expectation on the joint
distribution of asset positions, utility types and search intensities among all the other agents can thus be
simplified as the joint densities of asset position and utility type, which are denoted as φ0(δ) and φ1(δ).
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λ∗0(δ) =

∫ δ
0

λ∗1(δ′)

Λ1
(4V (δ)−4V (δ′))φ1(δ′)dδ′

2c1

(8)

Λ0 = 2

∫ 1

0

λ∗0(δ′)φ0(δ′)dδ′ (9)

Λ1 = 2

∫ 1

0

λ∗1(δ′)φ1(δ′)dδ′ (10)

φ0(δ) =

∫ λ̄

0

Φ0(dδ, dλ′) (11)

φ1(δ) =

∫ λ̄

0

Φ1(dδ, dλ′) (12)

2.2 Distribution of agents’ idiosyncratic states

Before formally defining the equilibrium, we discuss the equilibrium conditions for the dis-

tribution of idiosyncratic states among all agents. Specifically for each utility type δ, we

characterize the law of motions for the densities of asset owners φ1(δ) and nonowners

φ0(δ). Each agent’s utility type changes at Poisson times, and we let f̂δ(δ) denote the

PDF of the distribution of the new utility type. The current population distribution satisfies

fδ(δ) = φ0(δ) + φ1(δ). For simplicity, we only consider the case f̂δ(δ) = fδ(δ) in equilibrium

in next section.10 The law of motions are as follows:

φ̇1(δ) = −αφ1(δ) +
α

2
f̂δ(δ)− 2φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′

+ 2φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′ = 0 (13)

10In Section 5, we will consider one specific form of aggregate liquidity shock and the refinancing channel
defined in Duffie, Gârleanu, and Pedersen (2007). The refinancing channel indicates that f̂δ(δ) 6= fδ(δ) =
φ0(δ) + φ1(δ), where the distribution of utility type fδ(δ) can gradually recover to the pre-shock scenario

due to the function of f̂δ(δ).
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φ̇0(δ) = −αφ0(δ) +
α

2
f̂δ(δ)− 2φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′

+ 2φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ = 0 (14)

In both equation (13) and (14): the first term is the outflow from asset owners (nonowners)

due to idiosyncratic liquidity shocks, and the second term is the corresponding inflow; the

third term is the outflow due to completed bilateral trades based on random search and

match. For example in equation (13), the third term represents asset owners of type δ sell

holding positions to their matched nonowners whose utility types are higher than δ; the

fourth term is correspondingly the inflow due to completed bilateral trades.

Additionally, φ0(δ) and φ1(δ) at each time also satisfy the following conditions:

φ0(δ) + φ1(δ) = fδ(δ) (15)∫ 1

0

φ1(δ)dδ =

∫ 1

0

φ0(δ)dδ =
1

2
(16)

where (15) is based on the definition of PDF fδ(δ) and the joint densities φ0(δ) and φ1(δ),

and (16) is the market clear condition.

3 Stationary equilibrium and core-periphery network

In this section, we firstly define and prove the existance of a stationary equilibrium with an

arbitrary population distribution fδ(δ) by Definition 3.1 and Proposition 2, then character-

ize the shapes of equilibrium functions under different conditions. Finally, we define and

characterize the shape of average search intensity function in the cross-section of agents, and

discuss its implication for the core-periphery trading network.

Definition 3.1: A stationary equilibrium contains 4V (δ), φ1(δ), φ0(δ), λ∗1(δ) and λ∗0(δ)

such that:

1. Given φ1(δ), φ0(δ) and fδ(δ), for ∀δ ∈ [0, 1]:

– 4V (δ), λ∗1(δ), λ∗0(δ) solve agent’s HJB equation (6) and first order conditions

(7)-(8).
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2. Given 4V (δ), λ∗1(δ), λ∗0(δ), the endogeneous distributions φ1(δ), φ0(δ) satisfy:

– φ0(δ) + φ1(δ) = fδ(δ) for ∀δ ∈ [0, 1].

– φ̇1(δ) = φ̇0(δ) = 0 in law-of-motion equations (13)-(14).

3. Market clears:

–
∫ 1

0
φ1(δ)dδ = 1

2
.

Proposition 2: There exists a stationary equilibrium given a uniform distribution of utility

type fδ(δ) ≡ 1, ∀δ ∈ [0, 1], for any r > 0, α > 0 and c1 > 0. Proof is in Appendix C.

In Proposition 2, we implicitly assume that the distribution of new utility type f̂δ(δ) by

receiving idiosyncratic liquidity shocks is the same as the population distribution fδ(δ) in

stationary equilibrium. In Section 5, we relax this assumption to characterize the market

dynamics in response to an aggregate liquidity shock.

3.1 Equilibrium with symmetric fδ(δ)

In the remaining paper, we consider a specific form of population PDF fδ(δ): symmetric

with respect to the middle-level utility type δ = 1
2
, decreasing in δ ∈ [0, 1

2
], and increasing

in δ ∈ [1
2
, 1]. In numerical analysis, we use the uniform distribution as a specific example.

The reason we consider a such form of distribution is, when fδ(δ) is convex, the model

generates monotonically increasing φ1(δ) and decreasing φ0(δ) in stationary equilibrium.

Such an equilibrium is more interesting as it is consistent with the intuition that there is a

larger proportion of agents with higher utility types (lower liquidity needs) holding the asset

in their inventories. With symmetric PDF fδ(δ), we further define a symmetric stationary

equilibrium as follows:

Definition 3.2: With symmetric PDF fδ(δ), in symmetric stationary equilibrium, the den-

sity and search intensity functions are required to satisfy:

φ0(δ) = φ1(1− δ), ∀δ ∈ [0, 1] (17)

λ∗0(δ) = λ∗1(1− δ), ∀δ ∈ [0, 1] (18)
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and all equilibrium components 4V (δ), φ1(δ), φ0(δ), λ∗1(δ) and λ∗0(δ) also satisfy Definition

3.1.

By Definition 3.2, the agent with the utility type δ∗ = 1
2

has some special properties: [1]

she searches at the same speed on buy and sell sides λ∗1(δ∗) = λ∗0(δ∗); [2] her reservation value

is exactly equal to the counterfactual frictionless price, i.e.,4V (δ∗) = δ∗+αEδ(4V (δ))
α+r

= δ∗

r
= p,

where p is the unique market clearing price in the frictionless benchmark. Details about

the frictionless benchmarket are in Section A. Intuitively, this agent is indifferent between

holding or not holding the asset. By her reservation value, she weights more future utility

types than her current asset position. Therefore, her main incentive to enter the market is

to provide intermediation services, in the form of purchasing at lower prices and selling at

higher prices. We call this agent with δ∗ = 1
2

as a pure intermediator. Intuitively, the pure

intermediator’s investment in search intensity should be most sensitive with respect to the

market parameters, since she has no inelastic hedging purpose to be either a net buyer or a

net seller.

Next we offer the conditions for increasing φ1(δ) and decreasing φ0(δ) in Proposition

3, and we characterize the shapes of the density functions with different model parameters

in Proposition 4. Then we are ready to define and characterize the shape of average search

intensity λ̄(δ) in Section 3.2. In the expression of λ̄(δ), density functions φ1(δ) and φ0(δ) work

as weights imposed on selling-side search intensity λ1(δ) and buying-side search intensity

λ0(δ).

Proposition 3: In stationary equilibrium with symmetric (either convex or concave) distri-

bution of utility type fδ(δ), if the following condition is satisfied, we have φ′0(δ) < 0 < φ′1(δ),

∀δ ∈ [0, 1]:

For fδ(δ), 6 ∃ δ∗ ∈ [0, 1] s.t.,

(α
2

+ 2λ∗0(δ)a(δ∗)
)
f ′δ(δ

∗) +
1

c1

d4V (δ∗)

dδ

(
a(δ∗)2φ0(δ∗) + b(δ∗)2φ1(δ∗)

)
(19)

+2λ∗1(δ∗)λ∗0(δ∗)φ1(δ∗)φ0(δ∗)

(
1

Λ0

+
1

Λ1

)
= 0

where λ∗0(δ), λ∗1(δ), Λ0, Λ1 and 4V (δ) follow (6)-(10). And notations a(δ) and b(δ) follow

the Appendix B. Proof is in Appendix D.
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The intuition behind condition (19) is: when fδ(δ) is convex, to guarantee φ′1(δ) > 0

on δ ∈ [0, 1
2
] (equally φ′0(δ) < 0 on δ ∈ [1

2
, 1]), it is necessary that fδ(δ) does not drop too

quickly within δ ∈ [0, 1
2
]. If fδ(δ) drops too quickly, although there is a larger proportion of

agents with high utility types holding the asset, the absolute level of density φ1(δ) may still

decrease in this range; similarly, when fδ(δ) is concave, to guarantee φ′1(δ) > 0 on δ ∈ [1
2
, 1]

(equally φ′0(δ) < 0 on δ ∈ [0, 1
2
]), it is necessary that fδ(δ) does not to drop too quickly

within δ ∈ [1
2
, 1]. Note that fδ(δ) ≡ 1, ∀δ ∈ [0, 1] automatically satisfies the condition (19)

in Proposition 3. In this case, φ0(1
2
) = φ1(1

2
) = 1

2
and |φ′0(1

2
)| = |φ′1(1

2
)|. In the remaining

part of this paper, we will mainly focus on the case of uniform fδ(δ).

Proposition 4: In symmetric equilibrium with uniform distribution of utility type fδ(δ) ≡ 1,

∀δ ∈ [0, 1]: if c1 and/or α increases, given that λ∗1(0) decreases11, then φ1(δ) (φ0(δ)) will

increase (decrease) for each δ ∈ [0, 1
2
), and will decrease (increase) for each δ ∈ (1

2
, 1]. The

magnitude of changes shrink as δ gets closer to the middle-level 1
2
. Proof is in Appendix E.

The intuition behind Proposition 4 is: when α increases and c1 remains unchanged ,

every agent’s utility type changes at a higher frequency, then there will be more agents

with mis-aligned asset positions.12 In other words, for each δ ∈ [0, 1
2
) (δ ∈ (1

2
, 1]), there

will be a larger proportion of asset owners (nonowners); when c1 increases and α remains

unchanged, since it is more costly to search and trade inside the market, there will also be

a larger proportion of agents holding mis-aligned asset positions within each δ ∈ [0, 1]. To

summarize, a higher Poisson intensity of idiosyncratic liquidity shocks and/or a more costly

investment in searching will raise the market-level mis-alignment of the asset. Figure 1 gives

11The reason we need the condition “λ∗1(0) decreases” is that: by increasing the cost coefficient c1, for
asset owner with utility type δ = 0, there will be two counteractive effects that there will be more asset
nonowners with utility type higher than zero which potentially increases the benefit from searching but it
will also be more expensive for asset owner of type zero to search. “λ∗1(0) decreases” will guarantee that
the latter effect dominates. And this will determine the shape of the asset-owner density function since as
search is discouraged, there will be more mis-aligned agents in the market; by increasing the parameter α,
although the first effect above will encourage the asset owner of type zero to search but there will be more
competitors of the same type also with mis-aligned asset positions, which potentially discourages the search
at the same time, so it is also reasonable to assume that “λ∗1(0) decreases”.

12In our model with fixed asset supply s = 1
2 , if the market is frictionless (i.e. Walrasian market),

φ0(δ) = fδ(δ) = 1 (φ1(δ) = 0) for all δ ∈ [0, 12 ) and φ1(δ) = fδ(δ) = 1 (φ0(δ) = 0) for all δ ∈ [ 12 , 1], that is,
the asset is allocated to the agents who currently value it most. In an OTC market, we call all the asset
owners with utility types δ ∈ [0, 12 ) and all the nonowners with utility types δ ∈ [ 12 , 1] as the ones holding
mis-aligned positions. We will discuss the frictionless benchmark in Section 4.
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Figure 1: Equilibrium asset-owner density in Walrasian and OTC markets

(α ∈ [0.005, 0.75], c1 ∈ [1, 2])

a numerical example of the asset-owner density φ1(δ) under different combinations of α and

c1, in the case of fδ(δ) ≡ 1, ∀δ ∈ [0, 1]. We can see, as the α and/or c1 shrinks, the shape of

asset-owner density will be closer to a frictionless case.

3.2 Average search intensity λ̄(δ)

We define the proportions of asset owners and nonowners within each utility type δ ∈ [0, 1]

as follows:

S0(δ) =
φ0(δ)

fδ(δ)
(20)

S1(δ) =
φ1(δ)

fδ(δ)
(21)

Next we define the weighted average search intensity λ̄(δ) as:

λ̄(δ) = S1(δ)λ∗1(δ) + S0(δ)λ∗0(δ) =
φ1(δ)

fδ(δ)
λ∗1(δ) +

φ0(δ)

fδ(δ)
λ∗0(δ) (22)

In the case of uniform population distribution fδ(δ) ≡ 1, ∀δ ∈ [0, 1], the proportions of
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asset owners and nonowners are exactly densities φ1(δ) and φ0(δ). The shape of λ̄(δ) depends

on: [1] each agent’s search intensities separately on the buy and the sell side of the market,

λ∗1(δ) and λ∗0(δ); and [2] the likelihood that each agent lies on the sell side φ1(δ), and the

likelihood for the buy side φ0(δ).

Proposition 5: In symmetric equilibrium with fδ(δ) ≡ 1, ∀δ ∈ [0, 1], and c1 > 0, α > 0,

the weighted average search intensity function λ̄(δ) maintains the following properties:

1. λ̄′(1
2
) = 0, λ̄′(0) < 0, λ̄′(1) > 0;

2. For each α > 0 (c1 > 0), ∃c∗1(α) > 0 (α∗(c1) > 0), s.t. if c1 > c∗1(α) (α > α∗(c1)):

– λ̄′(δ) < 0 ∀δ ∈ [0, 1
2
);

– λ̄(0) > λ̄(1
2
);

– λ̄′′(1
2
) > 0;

3. For each α > 0 (c1 > 0), ∃c∗∗1 (α) > 0 (α∗∗(c1) > 0), s.t. if c1 < c∗∗1 (α) (α < α∗∗(c1)):

– ∃δ̂ ∈ (0, 1
2
) s.t. λ̄′(δ̂) > 0;

– λ̄(0) < λ̄(1
2
);

– λ̄′′(1
2
) < 0;

Proof is in Appendix F.

Proposition 5 implies that in different ranges of parameters, the shape of average search

intensity λ̄(δ) can be concave (hump-shaped), convex, or in between. Specifically, δ = 1
2

is always a stationary point (either local maximum or local minimum point). Given that

λ̄′(0) < 0, in the case of lower c1, δ = 1
2

is a local maximum point. Then by Mean Value

Theorem, there must exist a utility type δ′ ∈ (0, 1
2
) (symmetrically 1− δ′ ∈ (1

2
, 1)) which is a

local minimum point. With α fixed, when c1 changes from being small (< c∗∗1 (α)) to being

large (> c∗1(α)), this local minimum point will shifts from being close to δ = 0 to being close

to δ = 1
2
, on the left part of λ̄(δ), until δ = 1

2
becomes the global minimum point. Similar

idea works for the case in which c1 is fixed and α changes from being small (< α∗∗(c1)) to

being large (> α∗(c1)).
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We can economically understand the shape of average search intensity λ̄(δ) through a

composition effect: [1] When search frictions are low, consider an agent with the highest

utility type δ = 1. By Proposition 1, when this agent is on the buy side, she is able to

search and buy very quickly through investing in an extremely high search intensity. Once

she acquires the asset, she switches to the sell side, and also switches to a low-level search

intensity, since there are no potential buyers with utility types higher than hers, unless her

utility type changes by receiving an idiosyncratic liquidity shock. In other words, when this

agent stays on the sell side, the gain from searching is very low. In stationary equilibrium,

although this highest-utility-type agent buys very quickly, she spends less time on the buy

side (i.e. lower density φ0(δ)) and spends more time on the sell side (i.e. higher density

φ1(δ)). Regarding the densities φ0(δ) and φ1(δ) as weights, her average search intensity is

at a low level. Similar result works for an agent with the lowest utility type δ = 0, she

sells very quickly and is more likely to be on the buy side, also with a low search intensity.

This makes her average search intensity also at a low level. By contrast, the intermediate-

utility-type agent (δ = 1
2
) imposes equal weights on the buy and the sell sides, with relatively

high search intensity on both sides when search frictions are low. So considering the average

search effort across the two sides, she searches more actively than the other agents. [2] When

search frictions are high, even extreme-utility-type agents (δ = 0 and δ = 1) have a weak

incentive to invest in high search intensities. This works with the higher frequency of changes

in agents’ utility types (high α) to make more extreme-utility-type agents have mis-aligned

asset positions. Therefore, although the absolute level of average search intensity drops,

compared with the intermediate-utility-type agents, extreme-type ones still have a stronger

“hedging” incentive to search and adjust their mis-aligned positions. And the fact that

intermediate-type agents have their average search intensity drop much faster is consistent

with their roles as a pure intermediator by Definition 3.2.

To clarify how agents switch between higher and lower search speeds, in the numerical

examples and the section of core-periphery trading network, we will mainly focus on the

average search intensities and agent-level liquidity measures of the intermediate-utility-type

agent (δ = 1
2
) and the extreme-utility-type agents (δ = 0 and 1).

Numerical examples We give numerical solutions with three sets of parameters c1 and

α in Figure 2-4. The value of c1 measures how costly it is to invest in searching, and the
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value of α measures how frequently agents’ utility types change. By Proposition 5, as c1 and

α increases, extreme-utility-type agents, who initially invest in search intensities lower than

the intermediate-utility-type agents, will switch to search intensities which are higher than

the latter agents. Also, by the corresponding graphs of asset-owner and nonowner densities,

there will be more agents with mis-aligned asset positions in the market with higher c1 and

α. Note that we are more interested in the trend of average search intensity across different

agents. By the numerical examples, we can see the reason why extreme-utility-type agents

search at higher speeds than intermediate-utility-type ones is the latter group of agents have

their searching speeds drop faster when search frictions are higher.
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Figure 2: Equilibrium solutions with c1 = 2, α = 0.05
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3.3 Core-periphery trading network

We follow Neklyudov (2012) to consider the random-search generated trading network. In

this section, we show the consistency between agents’ average search intensities and gross

trading volumes across buy and sell sides. The latter variable is proxy for agents’ centrality

on the trading network. Additionally, we show the relationship between average search

intensity and other agent-level liquidity measures.

Trading volumes We denote agents’ gross trading volume across buy and sell sides as

G(δ) in (23), and use it as proxy for agents’ centrality. To evaluate the level of intermedi-

ation service each agent provides to the whole group, we also define the net volume N(δ)

and intermediation volume I(δ) in (24)-(25). These three agent-level volume measures are

similarly defined and discussed in Neklyudov (2012), Atkeson, Eisfeldt, and Weill (2015) and

Üslü (2019).

G(δ) = 2φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ + 2φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′ (23)

N(δ) =

∣∣∣∣2φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ − 2φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′
∣∣∣∣ (24)

I(δ) = G(δ)−N(δ)

= 4 ∗min
{
φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′, φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′
}

(25)

where intermediation volume equals gross volume minus net volume, and it represents the

total magnitude of intermediation service that each agent provides to the whole market.

Both the gross and intermediation trading volumes are manifestations of agents’ ability to

reallocate asset positions within the market.

Similar as how the shape of average search intensity λ̄(δ) changes with respect to different

market parameters c1 and α, intermediate-type agents (δ = 1
2
) switch from the core to the

periphery by the measure of gross trading volume in Figure 5, when searching becomes

more costly and agents’ utility types change at a higher frequency. However by the net and

intermediation volumes, their role as a “pure intermediator” remains unchanged in different
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Figure 5: Trading volumes in different markets

market environments.

Centrality profit per trade Our model also sheds some light on the centrality discount

and centrality premium separately documented in Li and Schürhoff (2014) and Hollifield,

Neklyudov, and Spatt (2017). Specifically, we calculate and characterize the trend of inter-

mediation profit per trade IPp(δ), in the cross-section of agents.

IPp(δ) = P̄s(δ)− P̄b(δ) ∀δ ∈ (0, 1) (26)

where

P̄s(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0

4V (δ)+4V (δ′)
2

φ0(δ′)dδ′∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′

(27)
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and

P̄b(δ) =

∫ δ
0

λ∗1(δ′)

Λ1

4V (δ)+4V (δ′)
2

φ1(δ′)dδ′∫ δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′

(28)

Intuitively, P̄s(δ) and P̄b(δ) are agents’ average selling price and average buying price13.

In the current literature, Li and Schürhoff (2014) documents the positive correlation

between agents’ centrality and bid-ask spread per trade (i.e. centrality premium) in U.S.

municipal bond market, and Hollifield, Neklyudov, and Spatt (2017) documents the negative

correlation between the two (i.e., centrality discount) in U.S. securitizations market. Similar

as Üslü (2019), our model also attributes the different signs of correlation between agents’

centrality and intermediation profit per trade to the level of market frictions. The signs

of correlation we obtain in different cases are consistent with Üslü (2019). Figure 6 shows

the intermediation profit per trade is always minimized at δ = 1
2
. As a result, centrality

premium appears in more frictional and volatile markets, and centrality discount appears in

less frictional and volatile markets. By our model, we are able to give a conjesture that the

core agents in U.S. securitizations market should have close-to-average liquidity needs, and

the core agents in U.S. municipal bond market should on average have either the highest or

the lowest liquidity needs among all the agents.

13Since agents with δ = 0 (δ = 1) either remain silent or search to sell (buy), they do not provide
intermediation service to the whole interagent market. So we ignore these two utility types when discussing
intermediation profit per trade.
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Figure 6: Correlation between centrality and intermediation profit per trade
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4 Efficiency analysis

4.1 Social optimal search intensity

We define the social welfare as the difference between the sum of all agents’ discounted flow

utility and the aggregate search cost. For now, we assume a quadratic form of search cost,

and we will relax this assumption in Section 4.2.

W =

∫ +∞

0

e−rt
∫ 1

0

δφ1(δ)dδdt−
∫ +∞

0

e−rt
∫ 1

0

c1λ
∗
1

2(δ)φ1(δ)dδdt

−
∫ +∞

0

e−rt
∫ 1

0

c1λ
∗
0

2(δ)φ0(δ)dδdt

=
1

r

(∫ 1

0

δφ1(δ)dδ −
∫ 1

0

c1λ
∗
1

2(δ)φ1(δ)dδ −
∫ 1

0

c1λ
∗
0

2(δ)φ0(δ)dδ

)
(29)

We specifically focus on symmetric equilibria, then the last two terms in (29) are equal, and

the social welfare is simplified as:

W =
1

r

(∫ 1

0

δφ1(δ)dδ − 2

∫ 1

0

c1λ
∗
1

2(δ)φ1(δ)dδ

)
(30)

Then we discuss that in the symmetric equilibrium with uniform population distribution

of utility type fδ(δ) ≡ 1, ∀δ ∈ [0, 1], what is the social optimal endogeneous search intensities

among the agents.14 We define the following normed linear spaces for the candidate social

optimal asset-owner’s search intensity λS1 (δ) and density φS1 (δ): ΛS1 = {λS1 (δ) : λS1 (δ) ∈
C1[0, 1];λS1 (δ) ≥ 0 and λS

′
1 (δ) ≤ 0, ∀δ ∈ [0, 1]},15 ΦS1 = {φS1 (δ) : φS1 (δ) ∈ C1[0, 1]; 0 ≤

14The original social planner problem has λS∗1 (δ) as its unique control variable. In the final version of
social planner’s problem, we regard the asset-owner density φS1 (δ) as the second control function, because
there is a one-to-one mapping between λS∗1 (δ) and φS1 (δ) through the law-of-motion equations of densities
in stationary equilibrium.

15It is intuitive that the social optimal meeting technology of asset owners λS1 (δ) is a decreasing function.
Suppose the social optimal function λS1

∗
(δ) has two points δ1 < δ2 with λS1

∗
(δ1) < λS1

∗
(δ2), then we can

switch the meeting technologies of these two agents without increasing the total investment cost. Then the
agent with lower utility type will be assigned with higher meeting technology thus having more oppotunities
to sell his asset. Since lower-type asset owners are more likely to be mis-aligned agents, the above switching
help improve the alignment of the whole market. Or for simplicity, we can just guess and verify later that
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φS1 (δ) ≤ 1 and φS1
′
(δ) ≥ 0, ∀δ ∈ [0, 1];

∫ 1

0
φS1 (δ)dδ = 1

2
}, all with the norm ‖f‖ = max

0≤δ≤1
|f(δ)|.

The simplified social planner problem [SP ] is:

max
λS1 (δ)∈ΛS1,φ

S
1 (δ)∈ΦS1

W =

∫ 1

0

(δ − 2c1λ
S
1

2
(δ))φS1 (δ)dδ

s.t.

φS1 (δ) =
1

1 +
α
2

+2λS1 (δ)
∫ 1−δ
0

λS1 (δ′)
Λ1

φS1 (δ′)dδ′

α
2

+2λS1 (1−δ)
∫ δ
0

λS1 (δ′)
Λ1

φS1 (δ′)dδ′

∀δ ∈ [0, 1] (31)

and

Λ1 = 2

∫ 1

0

λS1 (δ′)φS1 (δ′)dδ′

where the constraint (31) is obtained by the law-of-motion equation (13) in stationary

equilibrium and also by the symmetry of λS1 (δ) and λS0 (δ) with respect to δ = 1
2
, i.e.

λS0 (δ) = λS1 (1− δ),∀δ ∈ [0, 1].

Before explicitly solving the social planner problem [SP ], we give Proposition 6 which

offers a necessary condition on the social optimal solution.

Proposition 6: If λS∗1 (δ) and φS∗1 (δ) solve the social planner problem [SP ], then λS∗1 (δ) ≡ 0

for ∀δ ∈ [1
2
, 1]. Proof is in Appendix G.

The intuition behind Proposition 6 is, it is the social optimal case to let only the agents with

mis-aligned asset positions to search at positive speeds. For the agents with well-aligned

positions, it always benefits the social welfare to make them search at zero speed. To prove

Proposition 6, the key idea is to show for any pair of candidate symmetric search intensity

functions λS1 (δ) and λS0 (δ), the objective value W will always increase if we shrink any

positive value of λS1 (δ) (λS0 (δ)) in the higher (lower) half range of utility type [1
2
, 1] ([0, 1

2
])

and re-assign the shrinked amount of search intensity to a symmetric utility type in the lower

(higher) half range.

By Proposition 6, we obtain the explicit-form social optimal search intensity for asset

the social optimal λS1
∗
(δ) is a decreasing function on [0, 1].
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owners, given a quadratic form of search cost (details are in Appendix I):

λS∗1 (δ) =

{
−2c1α2+

√
4c21α

4+4c1α2( 1
2
−δ)

2c1α
δ ∈ [0, 1

2
);

0 δ ∈ [1
2
, 1].

(32)

We compare the social optimal and competitive equilibrium solutions by a numerical

example in Figure 7 and 8. The weighted average search intensity for asset owners (also for

nonowners by symmetry) is ΛC
1 = 0.0766 in competitive equilibrium and ΛS

1 = 0.0376 in the

social optimal solution. This means in the social optimal case, agents on aggregate spend a

lower search cost. The social welfare is WC = 6.5764 in competitive equilibrium, which is

lower than that in the social optimal solution W S = 6.7820.

Figure 7 compares the search intensity functions between the social optimal and com-

petitive equilibrium solutions. The numerical solution λS∗1 (δ) exactly matches the analytical

one in (32). Intuitively, no agents are expected to search at positive speeds on both sides

of the market. Also, more searching resources are assigned to agents with mis-aligned asset

positions, for example, see λS∗1 (0) > λ∗1(0). Figure 8 compares the density functions. We can

see the social optimal densities are closer to the Walrasian case in Figure 1. Figure 9 shows

that in social optimal solution, the intermediation trading volume is constantly zero across

all utility types. This implies there is no intermediation. As a result, the profit per trade

is no longer for intermediation services, but trivally equal to the expected revenue (cost)

per trade for asset owners (nonowners) with utility types lower (higher) than 1
2
. Moreover,

the aggregate of gross trading volumes among all agents is 1.54, compared with 2.33 in the

competitive equilibrium solution, also due to the missing of intermediation. All above imply

that in competitive equilibrium, agents do not internalize the social externality into their

own decisions, and there exist a large amount (in this case, approximately 34%) of inefficient

tradings which do not contribute to the well-alignment of the target asset among agents.

Searching resources are necessarily to be transferred between agents in the social opti-

mal case by Proposition 6 and the numerical examples in Figure 7 and 8. In competitive

equilibrium, agents with well-aligned asset positions over-search and agents with mis-aligned

agents under-search, compared with the social optimal case. This is consistent with the

Proposition 2 in Shimer and Smith (2001) that a decentralized competitive equilibrium in a

random search environment with multiple agents is not social optimal without taxes.
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4.2 Robustness check with a general cost function

Section 4.1 essentially concludes that in the social optimal solution, there is no intermediation

in the sense that no agents are expected to search at positive speeds on both sides of the

market. We generalize this conclusion by considering a general form of cost function in

Proposition 7.

Proposition 7: For any cost function C(λ) that satisfies the following condition16 17

C ′(λ)

{
≥ 0 δ = 0;

> 0 ∀δ ∈ (0, λub].
(33)

in symmetric stationary equilibrium, the social optimal search intensity for asset owners

satisfies λS∗1 (δ) ≡ 0 for ∀δ ∈ [1
2
, 1]. Proof is in Appendix H.

Condition (33) applies for most cost functions including the quadratic form C(λ) = c1λ
2,

linear form C(λ) = c1λ, concave form C(λ) = c1λ
p, p ∈ (0, 1), and etc, in all cases c1 > 0.

The key this result applies is our assumption that agents are allowed to switch to new

search intensities in response to idiosyncratic liquidity shocks. Compared with Farboodi,

Jarosch, and Shimer (2017b), in their paper, each agent’ search intensity remains constant

over time. This is equivalent that the adjustment cost is infinity. Therefore, there is no one-

to-one mapping between utility type and search intensity. Also, the main trading incentive in

their paper comes from the difference in search intensities between every two matched agents,

and the agent with the more advanced search intensity will play the role of intermediator.

In our paper, agents are allowed to adjust their search intensities without any adjustment

cost. This makes it possible for an agent to search at the maximum speed on one side of the

market, and freely switches to zero speed on the other side of the market, and vice versa.

Next we show how to obtain the explicit expression of λS∗1 (δ), for a general cost function

C(λ) satisfying the condition in Proposition 7. By substituting λS∗1 (δ) ≡ 0,∀δ ∈ [1
2
, 1] into

the equilibrium constraint to obtain the expression of φS1 (δ), we obtain the reduced-form

16In condition (33), C ′(0) ≥ 0 includes the case that C ′(0) = +∞
17λub is the upper bound of candidate search intensities for either asset owners or nonowners. If there is

no upper bound, it is equal that λub = +∞.
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social planner problem [RP ]:

max
λS1 (δ)∈ΛS1

W ∗(λS1 (δ)) =

∫ 1
2

0

(δ − 2C(λS1 (δ)))
1

1 +
α
2

+λS1 (δ)
α
2

dδ +

∫ 1

1
2

δ
1

1 +
α
2

α
2

+λS1 (1−δ)

dδ

=

∫ 1
2

0

(−αC(λS1 (δ)) + α
2

+ (1− δ)λS1 (δ)

α + λS1 (δ)

)
dδ

=

∫ 1
2

0

fC(λS1 (δ), δ)dδ

s.t.

K 1
2

=

∫ 1
2

0

α
2
λS1 (δ)

α + λS1 (δ)
dδ ≤ Λ (34)

where in (34), Λ is the restricted maximum search intensity of the whole market.

By Hamiltonian approach,

L(δ, λS1 (δ)) = H(δ,Kδ) + µ(Λ−K 1
2
)

=
−αC(λS1 (δ)) + α

2
+ (1− δ)λS1 (δ)

α + λS1 (δ)
+mδ

α
2
λS1 (δ)

α + λS1 (δ)
+ µ(Λ−K 1

2
) (35)

where

Kδ =

∫ δ

0

α
2
λS1 (δ′)

α + λS1 (δ′)
dδ′ and K̇δ =

α
2
λS1 (δ)

α + λS1 (δ)
(36)

The necessary conditions for λS1
∗
(δ) : [0, 1

2
)→ R+ to be the optimal solution are:

ṁδ = −∂H(δ,Kδ)

∂Kδ

= 0 (37)

m̄ = m 1
2

=

 0 if µ = 0;

−∂W ∗(λS1 (δ))

∂K 1
2

if µ > 0.
(38)

For simplicity, we consider the case Λ = λub, i.e., the constraint in (34) is never binding,
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then µ = 0 and m̄ = 0 by (38). Additionally, we have:

∂L(δ, λS1 (δ))

∂λS1 (δ)
=

∂

∂λS1 (δ)

(−αC(λS1 (δ)) + α
2

+ (1− δ)λS1 (δ)

α + λS1 (δ)

)
=

α
2
− αδ + αC(λS1 (δ))− α(α + λS1 (δ))C ′(λS1 (δ))

(α + λS1 (δ))2
(39)

and

∂2L(δ, λS1 (δ))

∂λS1
2
(δ)

=
−αC ′′(λS1 (δ))(α + λS1 (δ))2

(α + λS1 (δ))3

− (α− 2αδ + 2αC(λS1 (δ))− 2α(α + λS1 (δ))C
′
(λS1 (δ)))

(α + λS1 (δ))3
(40)

For each δ ∈ [0, 1
2
), the social optimal search intensity λS1

∗
(δ) takes different ranges of

values, given the following different conditions:

1.
∂L(δ,λS1 (δ))

∂λS1 (δ)
|λS1 (δ)=λS1

∗
(δ) = 0 and

∂2L(δ,λS1 (δ))

∂λS1
2
(δ)
|λS1 (δ)=λS1

∗
(δ) ≤ 0: then 0 < λS1

∗
(δ) < λub;

2.
∂L(δ,λS1 (δ))

∂λS1 (δ)
> 0 for ∀λ1(δ) ∈ [0, λub]: then λS1

∗
(δ) = λub;

3.
∂L(δ,λS1 (δ))

∂λS1 (δ)
< 0 for ∀λ1(δ) ∈ [0, λub]: then λS1

∗
(δ) = 0;

4. For every δ ∈ [0, 1
2
), @λS1 (δ) ∈ [0, λub] s.t.

∂L(δ,λS1 (δ))

∂λS1 (δ)
= 0 and

∂2L(δ,λS1 (δ))

∂λS1
2
(δ)

≤ 0, and

W (λS1 (δ) ≡ 0) > W (λS1 (δ) ≡ λub): then λS1
∗
(δ) ≡ 0, ∀δ ∈ [0, 1

2
);

5. For every δ ∈ [0, 1
2
), @λS1 (δ) ∈ [0, λub] s.t.

∂L(δ,λS1 (δ))

∂λS1 (δ)
= 0 and

∂2L(δ,λS1 (δ))

∂λS1
2
(δ)

≤ 0, and

W (λS1 (δ) ≡ 0) < W (λS1 (δ) ≡ λub): then λS1
∗
(δ) ≡ λub, ∀δ ∈ [0, 1

2
).

In Appendix I, we solve the explicit-form λS∗1 (δ) separately for each of the following cost

functions: quadratic forms C(λ) = c1λ
2 and C(λ) = c2λ

2 + c3λ, (c2 < 0, c3 > 0), linear form

C(λ) = c1λ, and concave form C(λ) = c1λ
p, p ∈ (0, 1), where in all cases c1 > 0.

4.3 One-dimentional policy measure with linear search cost

In this section, we specifically focus on the social optimal solution with a linear cost function

C(λ) = c1λ. The solution offers a one-dimention policy measure that a social planner can
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adopt to achieve the social optimal equilibrium. The social planner only needs to identify a

marginal-level utility type for asset owners, and assign all the asset owners with utility types

lower than this marginal level with the maximum level of search intensity; correspondingly,

identify another marginal-level utility type for nonowners, and assign all the nonowners with

utility types higher than this marginal level with the same maximum level of search intensity.

Proposition 8: In social planner problem with C(λ) = c1λ (c1 > 0), the social optimal

search intensity λS1
∗
(δ) satisfies:

1. If c1α <
1
2
,

λS1
∗
(δ) =

{
λub if δ ≤ δ∗1;

0 if δ > δ∗1.
(41)

where δ∗1 = 1
2
− c1α is the marginal-level utility type among asset owners;

2. If c1α ≥ 1
2
,

λS1
∗
(δ) ≡ 0 ∀δ ∈ [0, 1] (42)

Details are in Appendix I.

Figure 10 gives a numerical example to compare the search intensities between the social

optimal and competitive equilibrium solutions, given a linear search cost. We can see that

there is no intermediation in the social optimal solution, and there is even a small group of

agents with utility types around δ = 1
2

being fully silent on both sides of the market.

5 Aggregate liquidity shock

We consider an aggregate liquidity shock with a similar form as Duffie, Gârleanu, and Peder-

sen (2007). In their paper, upon receiving the aggregate shock, a randomly chosen proportion

of agents suffer a sudden drop in their utility types. In our model, since the population distri-

bution of utility type fδ(δ) has continuous support [0, 1], we consider the aggregate liquidity

shock in a new form such that, for each agent whose utility type is within δ ∈ [1
2
, 1], upon

the occurence of aggregate shock, each agent’s utility type shifts to δ− 1
2

with a probability

π. The shifting occurs independently among all the agents in δ ∈ [1
2
, 1], which allows us to
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Figure 10: Social optimal and competitive equilibrium search intensities for linear cost

(r = 0.05, c1 = 0.05, α = 0.35, λub = 1.4, and social welfares are WS = 6.8953, WC = 6.2031.)

apply the Law of Large Numbers. Figure 11 shows the changes in population distribution

and density functions upon the aggregate shock.

We maintain the self-refinancing channel in Duffie, Gârleanu, and Pedersen (2007) such

that the distribution of each agent’s new utility type in response to idiosyncratic liquidity

shocks is assumed to be always uniform on [0, 1], and the population distribution of utility

type can recover to the pre-shock scenario through this channel. Also, we assume the ag-

gregate liquidity shock arrives at Poisson times and have a permanent effect on asset price

through driving agents’ expectations.

Assuming t is the length of time after the most recent aggregate liquidity shock, we ob-

tain the new HJB equations for agents who are indirectly affected δ ∈ [0, 1
2
) and agents who

are directly affected δ ∈ [1
2
, 1]:
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Figure 11: Densities before and after the aggregate liquidity shock (with π = 0.5)

For ∀δ ∈ [0, 1
2
],

4V̇ (δ, t) = r4V (δ, t)− δ + c1λ
∗
1

2(δ, t)− c1λ
∗
0

2(δ, t)− α
∫ 1

0

(4V (δ′, t)−4V (δ, t))dδ′

− λ∗1(δ, t)

∫ 1

0

λ∗0(δ′, t)

Λ0,t

(4V (δ′, t)−4V (δ, t))φ0(δ′, t)dδ′

+ λ∗0(δ, t)

∫ δ

0

λ∗1(δ′, t)

Λ1,t

(4V (δ, t)−4V (δ′, t))φ1(δ′, t)dδ′

− η(4V (δ, 0)−4V (δ, t)) (43)
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For ∀δ ∈ [1
2
, 1],

4V̇ (δ, t) = r4V (δ, t)− δ + c1λ
∗
1

2(δ, t)− c1λ
∗
0

2(δ, t)− α
∫ 1

0

(4V (δ′, t)−4V (δ, t))dδ′

− λ∗1(δ, t)

∫ 1

0

λ∗0(δ′, t)

Λ0,t

(4V (δ′, t)−4V (δ, t))φ0(δ′, t)dδ′

+ λ∗0(δ, t)

∫ δ

0

λ∗1(δ′, t)

Λ1,t

(4V (δ, t)−4V (δ′, t))φ1(δ′, t)dδ′

− η [π(4V (δ − 0.5, 0)−4V (δ, t)) + (1− π)(4V (δ, 0)−4V (δ, t))] (44)

where η is the expected Poisson intensity of future aggregate liquidity shock.

The law-of-motion equations and market clear condition for densities φ1(δ, t) and φ0(δ, t)

after the aggregate liquidity shock are as follows:

For ∀t > 0 and ∀δ ∈ [0, 1],

φ̇1(δ, t) = −αφ1(δ, t) +
α

2
f̂δ(δ)− 2φ1(δ, t)λ∗1(δ, t)

∫ 1

δ

λ∗0(δ′, t)

Λ0,t

φ0(δ′, t)dδ′ (45)

+2φ0(δ, t)λ∗0(δ, t)

∫ δ

0

λ∗1(δ′, t)

Λ1,t

φ1(δ′, t)dδ′

φ̇0(δ, t) = −αφ0(δ, t) +
α

2
f̂δ(δ) + 2φ1(δ, t)λ∗1(δ, t)

∫ 1

δ

λ∗0(δ′, t)

Λ0,t

φ0(δ′, t)dδ′ (46)

−2φ0(δ, t)λ∗0(δ, t)

∫ δ

0

λ∗1(δ′, t)

Λ1,t

φ1(δ′, t)dδ′

where f̂δ(δ) ≡ 1 ∀δ ∈ [0, 1] and

φ0(δ, t) + φ1(δ, t) = fδ(δ, t) (47)∫ 1

0

φ0(δ, t)dδ =

∫ 1

0

φ1(δ, t)dδ =
1

2
(48)

The aggregate shock generates a permanent effect on transaction prices and market liq-

uidity. In Figure 12 and 13, we show the trends of market average selling and buying prices,
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and other agent-level liquidity measures, before and after the aggregate liquidity shock. [1]

Due to agents’ expectations on the occurence of future aggregate shocks, the new equilib-

rium prices are permanently lower than the levels in the normal situation. [2] Right after the

occurence of aggregate liquidity shock, there are immediate increases in market-level gross

and intermediation volumes. The reason is right after the start of crisis, agents with their

utility types shifted down have a strong incentive to sell their asset positions to higher-type

agents, and the latter group also expects higher gains from searching. These motivate all the

agents to re-allocate the asset positions between themselves, which will immediately raise

the gross and intermediation volumes in the market. As time goes by, both volumes will go

down since agents achieve better-aligned asset positions. Similarly due to the expectation

on future aggregate liquidity shock, agents are less incentivized to search and trade with

each other in the new stationary equilibrium. [3] Right after the occurence of aggregate

liquidity shock, there is an immediate decrease in the cross-agent average level of intermedi-

ation profit (bid-ask spread) per trade. The decrease is due to the decline in the cross-agent

average utility type. Although it usually measures the market-level transaction cost, the

decrease does not necessarily imply an improvement in market liquidity, since agents may

trade-off between lower average transaction cost and a higher trading delay, which is beyond

the discussion of this paper.

Policy targeting on different groups of agents We consider a specific form of policy

response such that the regulatory authority directly injects liquidity into a targeted group

of agents, to make the affected agents’ liquidity needs (i.e. utility types) recover to their

pre-shock levels. We consider two policy choices: one targets on all the agents with δ ∈
[1
2
, 3

4
] (Policy#1), and the other targets on all the agents with δ ∈ [3

4
, 1] (Policy#2). Then

we characterize the trends of market-level liquidity measures under these two policies, to

decide which policy is more effective in maintaining the market-level liquidity. By Figure 14,

Policy#2 uniformly dominates Policy#1 and the “no policy response” choice, in terms of

different liquidity measures and across different levels of market friction. Intuitively, agents

with higher utility types contribute more to maintaining the market liquidity. The key

implication of our model is, such higher-type agents become core agents in a market where

searching is more costly and/or agents’ utility type change at a higher frequency; and they

become periphery agents in the opposite market environment. Then we conclude that the
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Figure 12: Market average prices with α = 0.25, c1 = 1 and η = 0.1

core agents may not always be the most important ones that are given the priority to receive

injection of liquidity after the aggregate liquidity shock. To better maintain the market-level

liquidity, policy makers need to firstly identify the market parameters.

6 Conclusion

This paper develops a random search-and-match model where agents are allowed to en-

dogeneously choose and adjust their search intensities based on idiosyncratic states. This

model can generate the core-periphery trading network. We characterize the competitive

equilibria with different market parameters, and discuss its implication for the formation

of core-periphery trading network. Then we explicitly solve out the social optimal solution

under a general form of search cost function. Our main conclusions include: [1] agents can

switch between the core and periphery on the trading network. In markets where searching
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Figure 13: Measures of market liquidity with α = 0.25, c1 = 1 and η = 0.1

is more costly and agents’ utility types change at a higher frequency, periphery agents are

more important in perspective of maintaining the market-level liquidity; while in the oppo-

site market environments, core agents are more important. [2] in the social optimal case,

there is no intermediation, in the sense that no agent searches at positive speeds on both

sides of the market.

In this paper, we implicitly assume that there is perfect information in the market since

every agent has a rational expectation on the population distribution of utility types. As

a result, the main searching motive in our model is either to gain intermediation profits

or to hedge mis-aligned asset positions. Since the two most significant characteristics of

OTC markets are search frictions and imperfect information, in future research, we could

incorporate private information into the model and consider an alternative searching motive

to learn from trading. (e.g. to learn the quality of target asset or the trading counterparty’s

private valuation.)
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Figure 14: Cumulative changes before achieving a new stationary equilibrium

(cumulative changes are expressed as a percentage of the old equilibrium)
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Appendices

A The frictionless benchmark

To understand the effects of OTC market search frictions on market efficiency, we firstly

characterize the frictionless benchmark, i.e., the Walrasian market. In this market, upon

receiving idiosyncratic liquidity shocks, every agent can adjust her asset position immediately

to accommodate her new utility type at the unique price p.

Assume one agent’s current asset position is a ∈ {0, 1}, and her new asset position after

adjustment is a′ ∈ {0, 1}. The frictionless version of reservation value function V f
a (δ) satisfies

the following HJB equation:

rV f
a (δ) = δ ∗ a+ α

∫ 1

0

max
a′

[
V f
a′(δ

′)− V f
a (δ)− p(a′ − a)

]
dFδ(δ

′) (49)

By first order condition of a′, we have:

a′ =


1 if 4V f (δ′) > p;

1 or 0 if 4V f (δ′) = p;

0 if 4V f (δ′) < p.

Since 4V f (δ) is strictly increasing in δ by (49), ∃!δ∗ ∈ [0, 1] s.t. 4V f (δ∗) = p. Also, since p

is the market clearing price, as in Hugonnier, Lester, and Weill (2018), we have the following

market clear condition:

δ∗ = inf{δ ∈ [0, 1] : 1− Fδ(δ) ≤
1

2
} (50)

which means for all the agents with utility types δ > δ∗, they will hold the asset, and

for all the agents with utility types δ < δ∗, they will not hold the asset. In other words,

φf1(δ) = f(δ), ∀δ ∈ [δ∗, 1] and φf0(δ) = f(δ), ∀δ ∈ [0, δ∗]. We call δ∗ as the marginal-level

utility type in Walrasian market. In OTC markets, we regard all asset owners with utility

types in [0, δ∗] and all nonowners with utility types in [δ∗, 1] as the agents with mis-aligned

asset positions. In the case of fixed asset supply s = 1
2
, we have δ∗ = 1

2
.
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The HJB equation (49) then reduces to:

r4V f (δ) = δ + α(p−4V f (δ)) (51)

Then for δ∗ = 1
2
:

4V f (δ∗) =
δ∗

r
=

1

2r
= p (52)

We let af (δ) denote the new asset position for δ ∈ [0, 1] after adjustment. At each time

point, the expected instantaneous total trading volume in Walrasian market is:

TV f = α

∫ 1

0

∫ 1

0

|af (δ′)− af (δ)|dFδ(δ′)dFδ(δ)

= 2α

∫ δ∗

0

∫ 1

δ∗
|af (δ′)− af (δ)|dFδ(δ′)dFδ(δ)

= 2α(1− Fδ(δ∗))Fδ(δ∗)

= 2αs(1− s)

=
α

2

Intuitively in such a frictionless market, all the tradings happen due to idiosyncratic liquidity

shocks, and all of the tradings are completed between the agents and the Walrasian auctioner.

If we sum up all agents’ continuation utilities, we can obtain the social welfare with fδ(δ) ≡
1,∀δ ∈ [0, 1]:

W f =

∫ +∞

0

e−rt
(∫ 1

0

δφf1(δ)dδ

)
dt

=
1

r

∫ 1

δ∗
δfδ(δ)dδ

=
E[δ; δ > δ∗]

r

=
3

8r
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B Proposition 1

We use guess-and-verify approach to prove the monotonicity of reservation value function

4V (δ). Suppose 4V (δ) is strictly increasing, then with (2) minus (3) we obtain (6):

r4V (δ) = δ + C(λ∗0(δ))− C(λ∗1(δ)) + α

∫ 1

0

(4V (δ′)−4V (δ))dFδ(δ
′)

+λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

(4V (δ′)−4V (δ))φ0(δ′)dδ′ − λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (δ′))φ1(δ′)dδ′

and also (7)-(10). By (6)-(10), we obtain that for ∀δ ∈ [0, 1]

(4V (δ))2

(
a(δ)2 − b(δ)2

4c1

)
+4V (δ)

(
r + α +

B(δ)b(δ)− A(δ)a(δ)

2c1

)
− δ − αE[4V ]− B(δ)2 − A(δ)2

4c1

= 0 (53)

where

A(δ) =

∫ δ

0

λ∗1(δ′)

Λ1

4V (δ′)φ1(δ′)dδ′ (54)

B(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0

4V (δ′)φ0(δ′)dδ′ (55)

a(δ) =

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′ (56)

b(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ (57)

E[4V ] =

∫ 1

0

4V (δ′)fδ(δ
′)dδ′ (58)

We denote the LHS of equation (53) as F , by Implicit Function Theorem, we verify that

d4V (δ)

dδ
= − ∂F/∂δ

∂F/∂4V (δ)
=

1

r + α + λ∗1(δ)b(δ) + λ∗0(δ)a(δ)
> 0, ∀δ ∈ [0, 1] (59)
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By first order conditions (7)(8), it is trival that

λ∗1(1) = λ∗0(0) = 0 (60)

and by plugging the first order conditions into the HJB equations, the optimal search inten-

sity functions λ∗1(δ) and λ∗0(δ) satisfy

(α + r)V1(δ) = δ + c1λ
∗
1

2(δ) + αE[V1(δ)] (61)

(α + r)V0(δ) = c1λ
∗
0

2(δ) + αE[V0(δ)] (62)

where the expectation E[·] is by a symmetric PDF fδ(δ),

(61)-(62) =⇒
(α + r)4V (δ) = δ + c1λ

∗
1

2(δ)− c1λ
∗
0

2(δ) + αE[4V (δ)] (63)

apply E[·] on both sides =⇒

(α + r)E[4V (δ)] = E[δ] + c1

(∫ 1

0

λ∗1
2(δ)fδ(δ)dδ −

∫ 1

0

λ∗0
2(δ)fδ(δ)dδ

)
+ αE[4V (δ)] (64)

Later we will prove that if fδ(δ) is symmetric with respect to δ = 1
2
, then the equilibrium

optimal search intensity functions λ∗1(δ) and λ∗0(δ) will be symmetric to each other with

respect to δ = 1
2
, i.e. λ∗0(δ) = λ∗1(1− δ) for ∀δ ∈ [0, 1]. Here we just take this conclusion as

given and we get: ∫ 1

0

λ∗1
2(δ)fδ(δ)dδ =

∫ 1

0

λ∗0
2(δ)fδ(δ)dδ (65)

Together with (64), we obtain:

E[4V (δ)] =
E(δ)

r
> 0 (66)

Then by (60)(63),

(α + r)4V (0) = c1λ
∗
1

2(0) + αE[4V (δ)] > 0 (67)

Together with d4V (δ)
dδ

> 0, ∀δ ∈ [0, 1], we obtain

4V (δ) > 0, ∀δ ∈ [0, 1] (68)
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By (7)(8), we obtain:

dλ∗1(δ)

dδ
=
−d4V (δ)

dδ

∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′

2c1

< 0 ∀δ ∈ [0, 1] (69)

dλ∗0(δ)

dδ
=

d4V (δ)
dδ

∫ δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′

2c1

> 0 ∀δ ∈ [0, 1] (70)

C Proposition 2

Based on properties of the competitive equilibrium components 4V (δ), λ∗1(δ) and φ1(δ),

with fδ(δ) ≡ 1, we define the following normed linear spaces: 4VS = {4V (δ) : 4V (δ) ∈
C1[0, 1];4V (δ) ≥ 0 and 4V ′(δ) > 0,∀δ ∈ [0, 1];E(4V (δ)) =

∫ 1

0
4V (δ)dδ = 1

2r
}, ΛS1 =

{λ∗1(δ) : λ∗1(δ) ∈ C1[0, 1];λ∗1(δ) ≥ 0 and λ∗
′

1 (δ) < 0,∀δ ∈ [0, 1]}, ΦS1 = {φ1(δ) : φ1(δ) ∈
C1[0, 1]; 0 ≤ φ1(δ) ≤ 1 and φ′1(δ) > 0,∀δ ∈ [0, 1];

∫ 1

0
φ1(δ)dδ = 1

2
}, all with the norm ‖f‖ =

max
0≤δ≤1

|f(δ)|.

The vector of stationary equilibrium components [4V (δ) λ∗1(δ) λ∗0(δ) φ1(δ) φ0(δ)]T ,

by symmetry between λ∗1(δ) and λ∗0(δ) and symmetry between φ1(δ) and φ0(δ), is a fixed

point of the following transformation T : 4VS × ΛS1 × ΦS1 −→ 4VS × ΛS1 × ΦS1:18

T

 4V (δ)

λ∗1(δ)

φ1(δ)

 =

 T1(4V (δ))

T2(λ∗1(δ))

T3(φ1(δ))

 (71)

where

T1(4V (δ)) =
δ + c1λ

∗
0

2(δ)− c1λ
∗
1

2(δ) + α
∫ 1

0
4V (δ′)dFδ(δ

′)

r + α + λ∗1(δ)
∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′ + λ∗0(δ)

∫ δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′

+
λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0
4V (δ′)φ0(δ′)dδ′ + λ∗0(δ)

∫ δ
0

λ∗1(δ′)

Λ1
4V (δ′)φ1(δ′)dδ′

r + α + λ∗1(δ)
∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′ + λ∗0(δ)

∫ δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′

=
1

α + r

(
δ + c1λ

∗
1

2(δ)− c1λ
∗
1

2(1− δ) +
α

2r

)
18For each “component mapping” (T1 − T3), we assume all the other equilibrium components are given

and may/may not be the corresponding “fixed points”.
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T2(λ∗1(δ)) =
1

2c1

∫ 1

δ

λ∗0(δ′)

Λ0

4V (δ′)φ0(δ′)dδ′

=
1

2c1

∫ 1−δ

0

λ∗1(δ′)

Λ1

(4V (1− δ′)−4V (δ))φ1(δ′)dδ′

s.t. Λ1 = 2

∫ 1

0

λ∗1(δ′)φ1(δ′)dδ′

T3(φ1(δ)) =

α
∫ 1

0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(1− δ)

∫ δ
0
λ∗1(δ′)φ1(δ′)dδ′

2α
∫ 1

0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(1− δ)

∫ δ
0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(δ)

∫ 1−δ
0

λ∗1(δ′)φ1(δ′)dδ′

We use (4V (δ), λ∗1(δ), φ1(δ)) to denote the fixed points of 4V (δ), λ∗1(δ) and φ1(δ). Then we

verify that, given any two of the three fixed points, the third one always exists.

(1) Given the fixed point λ∗1(δ), by transformation T1,

4V (δ) = 1
α+r

(
δ + c1λ∗1

2
(δ)− c1λ∗1

2
(1− δ) + α

2r

)
is a fixed point of 4V (δ).

(2) Given the fixed points 4V (δ) and φ1(δ), plug them into transformation T2 which is

trivally continuous, we can prove this T2 works on normed linear space ΛS1 which is nonempty

(trivally), convex and compact.

Convexity

For ∀λ1∗
1 (δ), λ2∗

1 (δ) ∈ ΛS1 and ∀λ ∈ (0, 1), define the new function λ̂(δ) = λ∗λ1∗
1 (δ)+(1−λ)∗

λ2∗
1 (δ), it is trival that λ̂(δ) ∈ C1[0, 1], λ̂(δ) ≥ 0 and λ̂′(δ) = λ∗λ1∗

1
′
(δ)+ (1−λ)∗λ2∗

1
′
(δ) < 0.

So λ̂(δ) ∈ ΛS1 for ∀λ ∈ (0, 1).

Boundedness
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For ∀λ∗1(δ) ∈ ΛS1,

T2(λ∗1(δ)) =
1

2c1

∫ 1−δ

0

λ∗1(δ′)

Λ1

(4V (1− δ′)−4V (δ))φ1(δ′)dδ′

≤ (4V (1)−4V (0))
1

2c1

∫ 1−δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′

≤ (4V (1)−4V (0))
1

2c1

∫ 1

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′

=
(4V (1)−4V (0))

2c1

By Proposition 1, ∀4V (δ) ∈ 4VS is strictly increasing on [0, 1]. We have,

0 < 4V (1)−4V (0) =
1− 2c1λ

∗
1

2(0)

α + r
<

1

α + r
(72)

then

T2(λ∗1(δ)) <
1

2c1(α + r)
(73)

Equicontinuity

Firstly we need to prove the boundedness of d4V (δ)
dδ

for ∀4V (δ) ∈ 4VS.

d4V (δ)

dδ
=

1

r + α + λ∗1(δ)b(δ) + λ∗0(δ)a(δ)
(74)

where 0 ≤ a(δ) =
∫ δ

0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′ ≤ 1

2
and 0 ≤ b(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′ ≤ 1

2
.

Also by (72), 0 < λ∗1(0) = max
δ∈[0,1]

λ∗1(δ) < 1√
2c1

, then we get

1

r + α + 1√
2c1

<
d4V (δ)

dδ
<

1

r + α
= BdV (75)

Then for ∀λ∗1(δ) ∈ ΛS1 and ∀δ ∈ [0, 1]: given ∀ε > 0, we can always choose small enough

4̂ = 2c1ε
BdV

> 0, such that, by (7)-(10),

|λ∗1(δ + 4̂)− λ∗1(δ)| =

∣∣∣∣∣−4̂2c1

d4V (δ)

dδ

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ + o(4̂)

∣∣∣∣∣ ≤ 2 ∗ 1

2c1

2c1ε

BdV

BdV
1

2
= ε.
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Since 4̂ does not relate to specific value of δ, then any sequence of functions in normed linear

space ΛS1 is uniform equicontinuous on [0, 1]. Based on boundedness and equicontinuity

above, and refer to Arzelä-Ascoli theorem in Arzelà (1895), we prove that the continuous

transformation T2, given the fixed points 4V (δ) and φ1(δ), maps ΛS1 to ΛS1. And the

normed linear space ΛS1 is nonempty, convex and compact. By Schauder’s fixed point the-

orem, given the fixed points 4V (δ) and φ1(δ), there exists a fixed point λ∗1(δ) of λ∗1(δ).

(3) Given the fixed points λ∗1(δ) and 4V (δ), plug λ∗1(δ) into transformation T3 which is

trivally continuous, we can prove this T3 works on the normed linear space ΦS1 which is

nonempty, convex and compact.

Convexity

For ∀φ1
1(δ), φ2

1(δ) ∈ ΦS1 and ∀λ ∈ (0, 1), define the new function φ̂(δ) = λ ∗ φ1
1(δ) +

(1 − λ) ∗ φ2
1(δ), it is trival that φ̂(δ) ∈ C1[0, 1], 0 ≤ φ̂(δ) ≤ λ + 1 − λ = 1 and φ̂′(δ) =

λ ∗ φ1
1
′
(δ) + (1− λ) ∗ φ2

1
′
(δ) > 0. So φ̂(δ) ∈ ΦS1 for ∀λ ∈ (0, 1).

Boundedness

By definition of normed linear space ΦS1, it is trival that ΦS1 is bounded.

Equicontinuity

We already proved the boundedness of d4V (δ)
dδ

and thus the boundedness of λ∗1
′
(δ) =

dλ∗1(δ)

dδ
=

−1
2c1

d4V (δ)
dδ

∫ 1−δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′. Next we need to prove the boundedness of dφ1(δ)

dδ
.

dφ1(δ)

dδ

=
d

dδ

[
α
∫ 1

0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(1− δ)

∫ δ
0
λ∗1(δ′)φ1(δ′)dδ′

2α
∫ 1

0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(1− δ)

∫ δ
0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(δ)

∫ 1−δ
0

λ∗1(δ′)φ1(δ′)dδ′

]

=

[
λ∗1(1−δ)λ∗1(δ)φ1(δ)

Λ1
− λ∗1′(1− δ)a(δ)

] [
α
2

+ 2λ∗1(δ)b(δ)
]

(α + 2λ∗1(1− δ)a(δ) + 2λ∗1(δ)b(δ))2

−

[
λ∗1
′(δ)b(δ)− λ∗1(1−δ)λ∗1(δ)φ1(1−δ)

Λ1

] [
α
2

+ 2λ∗1(1− δ)a(δ)
]

(α + 2λ∗1(1− δ)a(δ) + 2λ∗1(δ)b(δ))2

We already proved the boundedness of λ∗1(δ), λ∗1
′(δ), a(δ), b(δ), and ∃ε̂ > 0 s.t. ε̂ ≤ Λ1 ≤

2λ∗1(0), then if we plug in the given fixed points λ∗1(δ) and 4V (δ) into the above equation,

we will obtain the boundedness of dφ1(δ)
dδ

, denote max
δ∈[0,1]

|dφ1(δ)
dδ
| = Bdφ1 .
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Then for ∀φ1(δ) ∈ ΦS1 and ∀δ ∈ [0, 1]: given ∀ε > 0, we can always choose small enough

4̂ = ε
2Bdφ1

> 0, such that,

|φ1(δ + 4̂)− φ1(δ)| =
∣∣∣∣dφ1(δ)

dδ
4̂+ o(|4̂|)

∣∣∣∣ ≤ 2 ∗ 4̂ ∗
∣∣∣∣dφ1(δ)

dδ

∣∣∣∣ ≤ 2 ∗ ε

2Bdφ1

∗Bdφ1 = ε. (76)

Since 4̂ does not relate to specific value of δ, then any sequence of functions in normed linear

space ΦS1 is uniform equicontinuous on [0, 1]. Based on boundedness and equicontinuity

above, and refer to Arzelä-Ascoli theorem, we prove the continuous transformation T3, under

given fixed points λ∗1(δ) and 4V (δ), maps ΦS1 to ΦS1, where the normed linear space ΦS1 is

nonempty, convex and compact. By Schauder’s fixed point theorem, given fixed points λ∗1(δ)

and 4V (δ), there exists fixed point φ1(δ) of φ1(δ).

By (1)-(3) above, we prove that there exists fixed points 4V (δ), λ∗1(δ), φ1(δ) for the trans-

formation T : 4VS × ΛS1 × ΦS1 −→ 4VS × ΛS1 × ΦS1 defined above, given any parameters

r > 0, α > 0 and c1 > 0.

D Proposition 3

We firstly consider symmetric and convex fδ(δ):

f ′δ(δ)


< 0 ∀δ ∈ [0, 1

2
);

= 0 δ = 1
2
;

> 0 ∀δ ∈ (1
2
, 1].

and

fδ(δ) = fδ(1− δ), ∀δ ∈ [0, 1]

fδ(δ) = φ1(δ) + φ0(δ), ∀δ ∈ [0, 1]
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By equilibrium condition (13) with f̂δ(δ) = fδ(δ),

we obtain (using the notations A(δ), B(δ), a(δ), b(δ) in Appendix B):

dφ̇1(δ)

dδ

= 0

= −αφ′1(δ) +
α

2
f ′δ(δ)− 2λ∗

′

1 (δ)φ1(δ)b(δ)− 2λ∗1(δ)φ′1(δ)b(δ) + 2
λ∗1(δ)φ1(δ)λ∗0(δ)φ0(δ)

Λ0

+ 2λ∗
′

0 (δ)φ0(δ)a(δ) + 2λ∗0(δ)(f ′δ(δ)− φ′1(δ))a(δ) + 2
λ∗1(δ)φ1(δ)λ∗0(δ)φ0(δ)

Λ1

,

∀δ ∈ [0, 1] (77)

since the sum of all the terms not including f ′δ(δ) or φ′1(δ) is positive, then

− (α + 2λ∗1(δ)b(δ) + 2λ∗0(δ)a(δ))φ′1(δ) +
(α

2
+ 2λ∗0(δ)a(δ)

)
f ′δ(δ) < 0, ∀δ ∈ [0, 1] (78)

By the definition and sign of f ′δ(δ), we obtain

φ′0(δ) < 0 ∀δ ∈ [0,
1

2
) (79)

φ′1(δ) > 0 ∀δ ∈ (
1

2
, 1] (80)(α

2
+ 2λ∗0(δ)a(δ)

)
φ′0(δ) <

(α
2

+ 2λ∗1(δ)b(δ)
)
φ′1(δ) ∀δ ∈ [0, 1] (81)

and since f ′δ(
1
2
) = 0

φ′1(
1

2
) = −φ′0(

1

2
) > 0 (82)

Suppose ∃δ∗1 ∈ [0, 1
2
), s.t. φ′1(δ∗1) < 0 and 6 ∃δ∗ ∈ [0, 1] s.t.

(α
2

+ 2λ∗0(δ∗)a(δ∗)
)
f ′δ(δ

∗) +
1

c1

d4V (δ∗)

dδ

(
a(δ∗)2φ0(δ∗) + b(δ∗)2φ1(δ∗)

)
(83)

+2λ∗1(δ∗)λ∗0(δ∗)φ1(δ∗)φ0(δ∗)

(
1

Λ0

+
1

Λ1

)
= 0
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Suppose all equilibrium components are smooth, by Mean Value Theorem, ∃δ∗2 ∈ (δ∗1,
1
2
) s.t.

φ′1(δ∗2) = 0. By (77), we obtain

(α
2

+ 2λ∗0(δ∗2)a(δ∗2)
)
f ′δ(δ

∗
2) +

1

c1

d4V (δ∗2)

dδ

(
a(δ∗2)2φ0(δ∗2) + b(δ∗2)2φ1(δ∗2)

)
(84)

+2λ∗1(δ∗2)λ∗0(δ∗2)φ1(δ∗2)φ0(δ∗2)

(
1

Λ0

+
1

Λ1

)
= 0

which contradicts with condition (83). Then we conclude 6 ∃δ∗1 ∈ [0, 1
2
), s.t. φ′1(δ∗1) < 0. So if

condition (83) is satisfied,

φ′1(δ) > 0 ∀δ ∈ [0, 1] (85)

Similar idea works for the sign of φ′0(δ) on δ ∈ (1
2
, 1]. Then we conclude as long as condition

(83) applies,

φ′0(δ) < 0 < φ′1(δ) ∀δ ∈ [0, 1] (86)

And the same conclusion applies when fδ(δ) is symmetric but concave.

E Proposition 4

We use the Implicit Function Theorem to show the effects of α and c1 on all the competitive

equilibrium components 4V (δ), λ∗1(δ) and φ1(δ) on δ ∈ [0, 1]. Since we only focus on

symmetric equilibrium defined in Definition 3.2, we have the other two components as λ∗0(δ) =

λ∗1(1− δ) and φ0(δ) = φ1(1− δ) for ∀δ ∈ [0, 1].

We write the three competitive equilibrium conditions collectively as follows:

H(4V (δ), λ∗1(δ), φ1(δ);α, c1) =

 H1(4V (δ), λ∗1(δ), φ1(δ);α, c1)

H2(4V (δ), λ∗1(δ), φ1(δ);α, c1)

H3(4V (δ), λ∗1(δ), φ1(δ);α, c1)

 ≡ 03×1 (87)
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where

H1(4V (δ), λ∗1(δ), φ1(δ);α, c1)

= 2αφ1(δ)

∫ 1

0

λ∗1(δ)φ1(δ)dδ + 2φ1(δ)λ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)dδ′

+ 2φ1(δ)λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′ − α
∫ 1

0

λ∗1(δ)φ1(δ)dδ − 2λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′

≡ 0 (88)

H2(4V (δ), λ∗1(δ), φ1(δ);α, c1)

= (α + r)4V (δ)− δ − c1λ
∗
1

2(δ) + c1λ
∗
1

2(1− δ)− αE[4V (δ)]

= (α + r)4V (δ)− δ − c1λ
∗
1

2(δ) + c1λ
∗
1

2(1− δ)− α

2r

≡ 0 (89)

H3(4V (δ), λ∗1(δ), φ1(δ);α, c1)

= 2c1λ
∗
1(δ)− (4V (0) +4V (1)−4V (δ))

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)

Λ1

dδ′

+

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)4V (δ′)

Λ1

dδ′

= 2c1λ
∗
1(δ)− (4V (0) +4V (1)−4V (δ))

∫ 1−δ

0

F (δ′)dδ′ +

∫ 1−δ

0

F (δ′)4V (δ′)dδ′

≡ 0 (90)

In the last but one equality, we use the notation F (δ) =
λ∗1(δ)φ1(δ)

Λ1
for simplicity.

By Implicit Function Theorem, we have the following general relation:

For any i = 1, 2, 3, any δ ∈ [0, 1] and any incrementals 19 h4V (δ), hλ∗1(δ), hφ1(δ),

∂Hi

∂4V (δ)
h4V (δ) +

∂Hi

∂λ∗1(δ)
hλ∗1(δ) +

∂Hi

∂φ1(δ)
hφ1(δ) +

∂Hi

∂c1

4c1 ≡ 0 (91)

19We will define the incrementals more formally in Section G.
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∂Hi

∂4V (δ)
h4V (δ) +

∂Hi

∂λ∗1(δ)
hλ∗1(δ) +

∂Hi

∂φ1(δ)
hφ1(δ) +

∂Hi

∂α
4α ≡ 0 (92)

Specifically for i = 1, we have:
∂H1

∂4V (δ)
h4V (δ) ≡ 0 (93)

∂H1

∂φ1(δ)
hφ1(δ) +

∂H1

∂λ∗1(δ)
hλ∗1(δ) (94)

= lim
m→0

{
H1(λ∗1(δ), φ1(δ) +mhφ1(δ))−H1(λ∗1(δ), φ1(δ))

m

+
H1(λ∗1(δ) +mhλ∗1(δ), φ1(δ))−H1(λ∗1(δ), φ1(δ))

m

}
= 2αφ1(δ)

∫ 1

0

λ∗1(δ)hφ1(δ)dδ + 2αhφ1(δ)

∫ 1

0

λ∗1(δ)φ1(δ)dδ + 2φ1(δ)λ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)hφ1(δ′)dδ′

+ 2hφ1(δ)λ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)dδ′ + 2φ1(δ)λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)hφ1(δ′)dδ′

+ 2hφ1(δ)λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′ − α
∫ 1

0

λ∗1(δ)hφ1(δ)dδ − 2λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)hφ1(δ′)dδ′

+ 2αφ1(δ)

∫ 1

0

hλ∗1(δ)φ1(δ)dδ + 2φ1(δ)hλ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)dδ′

+ 2φ1(δ)λ∗1(δ)

∫ 1−δ

0

hλ∗1(δ′)φ1(δ′)dδ′ + 2φ1(δ)λ∗1(1− δ)
∫ δ

0

hλ∗1(δ′)φ1(δ′)dδ′

+ 2φ1(δ)hλ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′ − α
∫ 1

0

hλ∗1(δ)φ1(δ)dδ

− 2λ∗1(1− δ)
∫ δ

0

hλ∗1(δ′)φ1(δ′)dδ′ − 2hλ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′

≡ 0 on δ ∈ [0, 1]

∂H1

∂c1

(δ)4c1 ≡ 0 and
∂H1

∂α
(δ)4α =

(
2φ1(δ)

∫ 1

0

λ∗1(δ)φ1(δ)dδ −
∫ 1

0

λ∗1(δ)φ1(δ)dδ

)
4α

(95)

Since by (95),
∂H1

∂α
(δ)4α +

∂H1

∂α
(1− δ)4α = 0 (96)
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and by (91)(92),

∂H

∂φ1(δ)
hφ1(δ) +

∂H

∂λ∗1(δ)
hλ∗1(δ) +

∂H

∂φ1(δ)
hφ1(1− δ) +

∂H

∂λ∗1(δ)
hλ∗1(1− δ)

= 2(hφ1(δ) + hφ1(1− δ))
(
α

∫ 1

0

λ∗1(δ′)φ1(δ′)dδ′ + λ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)dδ′

+λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′
)

≡ 0 (97)

we obtain that for either changing α or changing c1:

hφ1(δ) + hφ1(1− δ) ≡ 0, ∀δ ∈ [0, 1] (98)

Specifically for i = 2:

(α + r)h4V (δ) + 2c1

(
λ∗1(1− δ)hλ∗1(1− δ)− λ∗1(δ)hλ∗1(δ)

)
+4c1

(
λ∗1

2(1− δ)− λ∗1
2(δ)

)
≡ 0, ∀δ ∈ [0, 1] (99)

and

(α + r)h4V (δ) + 2c1

(
λ∗1(1− δ)hλ∗1(1− δ)− λ∗1(δ)hλ∗1(δ)

)
+4α

(
4V (δ)− 1

2r

)
≡ 0, ∀δ ∈ [0, 1] (100)

By (99)(100), we can also plug in 1 − δ without changing the equalities. Then we obtain

that for either changing α or changing c1:

h4V (δ) + h4V (1− δ) ≡ 0, ∀δ ∈ [0, 1] (101)

(98)(101) further give us:

h′φ1
(δ) = h′φ1

(1− δ), ∀δ ∈ [0, 1] (102)

h′4V (δ) = h′4V (1− δ), ∀δ ∈ [0, 1] (103)
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h4V (
1

2
) = hφ1(

1

2
) = 0 (104)

Then as long as we can identify the sign of h′φ1
(δ) (or h′4V (δ)) for any δ ∈ [0, 1], then it will

be sufficient to characterize the change in the shape of asset-owner density hφ1(δ) on the

whole interval. Here we specifically focus on the utility type δ = 0, by condition H1:

φ1(0) =
α
2

α + λ∗1(0)
(105)

By condition that if c1 increases, hλ∗1(0) < 0, then it is trival by (105) that hφ1(0) > 0;

By condition that if α increases, hλ∗1(0) < 0, then by (105):

(φ1(0)− 1

2
)4α + (α + λ∗1(0))hφ1(0) + φ1(0)hλ∗1(0) = 0 (106)

since the first and third terms in (106) are both negative, then

hφ1(0) > 0 (107)

If (107) applies when c1 and/or α increases, then by (102)(104), it is trival to prove by

contradiction that h′φ1
(δ) < 0, ∀δ ∈ [0, 1]. �

F Proposition 5

F.1

For symmetric equilibrium with fδ(δ) ≡ 1, ∀δ ∈ [0, 1],

λ̄(δ) = φ1(δ)λ∗1(δ) + φ0(δ)λ∗0(δ) (108)

Using the notations A(δ), B(δ), a(δ), b(δ) in Appendix B,

λ∗1
′(δ) = − 1

2c1

d4V (δ)

dδ
b(δ) (109)

λ∗0
′(δ) =

1

2c1

d4V (δ)

dδ
a(δ) (110)
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φ′0(δ) =
2
[
(λ∗1(δ)b(δ))′(α

2
+ 2λ∗0(δ)a(δ))− (λ∗0(δ)a(δ))′(α

2
+ 2λ∗1(δ)b(δ))

]
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

(111)

φ′1(δ) = −φ′0(δ) =
2
[
(λ∗0(δ)a(δ))′(α

2
+ 2λ∗1(δ)b(δ))− (λ∗1(δ)b(δ))′(α

2
+ 2λ∗0(δ)a(δ)))

]
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

(112)

=⇒
λ∗1
′(0) = − 1

4c1

1

r + α +
λ∗1(0)

2

(113)

λ∗0
′(0) = 0 (114)

φ′0(0) =
α(λ∗1(δ)b(δ))′|δ=0 − (λ∗0(δ)a(δ))′|δ=0(α + 2λ∗1(0))

(α + λ∗1(0))2
(115)

=

− α
8c1

1

r+α+
λ∗1(0)

2

(α + λ∗1(0))2

=⇒

λ̄′(0) = φ′1(0)λ∗1(0) + φ1(0)λ∗1
′(0) (116)

=

− α
8c1

λ∗1(0)

r+α+
λ∗1(0)

2

(α + λ∗1(0))2
− 1

4c1

φ1(0)

r + α +
λ∗1(0)

2

< 0

By symmetry,

λ̄′(1− δ)

= φ′1(1− δ)λ∗1(1− δ) + φ1(1− δ)λ∗1
′(1− δ) + φ′0(1− δ)λ∗0(1− δ) + φ0(1− δ)λ∗0

′(1− δ)
(117)

= −φ′0(δ)λ∗0(δ)− φ0(δ)λ∗0
′(δ)− φ′1(δ)λ∗1(δ)− φ1(δ)λ∗1

′(δ)

= −λ̄′(δ)

then

λ̄′(1) = −λ̄′(0) > 0 (118)
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and

λ̄′(
1

2
) = −λ̄′(1− 1

2
) = −λ̄′(1

2
) (119)

=⇒
λ̄′(

1

2
) = 0 (120)

F.2

Lemma 1: (1) As c1 → +∞: λ∗1(δ) → 0 and λ∗0(δ) → 0 for ∀δ ∈ (0, 1); (2) As c1 → 0:

given ∀δ̂ ∈ (0, 1) and ∀M > 0, λ∗1(δ̂) > M and λ∗0(δ̂) > M .

Proof:

By boundedness of 4V (δ) in (72), we have for ∀δ ∈ (0, 1)

0 <

∫ 1

δ

λ∗0(δ′)

Λ0

(4V (δ′)−4V (δ))φ0(δ′)dδ′ < (4V (1)−4V (0))

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ <
1

2(α + r)
(121)

0 <

∫ δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (δ′))φ1(δ′)dδ′ < (4V (1)−4V (0))

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′ <
1

2(α + r)
(122)

then it is trival that for any fixed α, as c1 → +∞,

λ∗1(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0
(4V (δ′)−4V (δ))φ0(δ′)dδ′

2c1

→ 0 (123)

λ∗0(δ) =

∫ δ
0

λ∗1(δ′)

Λ1
(4V (δ)−4V (δ′))φ1(δ′)dδ′

2c1

→ 0 (124)

By symmetry,

λ∗1(δ) =

∫ 1−δ
0

λ∗1(δ′)

Λ1
(4V (1− δ′)−4V (δ))φ1(δ′)dδ′

2c1

→ 0 (125)

and also by Section C, λ∗1(δ) ∈ ΛS1, φ1(δ) ∈ ΦS1 and 4V (δ) ∈ 4VS where ΛS1, ΦS1

and 4VS are compact sets. Then for each fixed δ̂ ∈ (0, 1), by Extreme Value Theorem,

60



∃(λ∗1S(δ), φ1S(δ),4VS(δ)) s.t.

(λ∗1S(δ), φ1S(δ),4VS(δ))

= argmax
(λ∗1(δ),φ1(δ),4V (δ))∈ΛS1×ΦS1×4VS

{∫ 1−δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (1− δ′))φ1(δ′)dδ′
}

(126)

and

M∗

= max
(λ∗1(δ),φ1(δ),4V (δ))∈ΛS1×ΦS1×4VS

{∫ 1−δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (1− δ′))φ1(δ′)dδ′
}

(127)

then for any other large constant M > 0, we can always find c∗1(δ̂) = −M∗

2M
s.t.

λ∗1(δ̂) = −
∫ 1−δ̂

0

λ∗1(δ′)

Λ1
(4V (δ)−4V (1− δ′))φ1(δ′)dδ′

2c1

> M ∀c1 < c∗1(δ̂) (128)

i.e. for each fixed δ̂ ∈ (0, 1),

λ∗1(δ̂)→ +∞ as c1 → 0 (129)

�

λ̄′(δ) = φ′1(δ)λ∗1(δ) + φ1(δ)λ∗1
′(δ) + φ′0(δ)λ∗0(δ) + φ0(δ)λ∗0

′(δ) (130)

= φ′1(δ)(λ∗1(δ)− λ∗0(δ)) +
1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))

(131)

where

φ′1(δ) =
(α + 4λ∗1(δ)b(δ))

(
a2(δ)
2c1

d4V (δ)
dδ

+
λ∗0(δ)λ∗1(δ)φ1(δ)

Λ

)
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

+
(α + 4λ∗0(δ)a(δ))

(
b2(δ)
2c1

d4V (δ)
dδ

+
λ∗0(δ)λ∗1(δ)φ0(δ)

Λ

)
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

(132)

Λ = Λ1 = Λ0 (133)
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(1) For each α, by Lemma 1,

λ̄′(δ) (134)

=
1

2c1

{
2c1φ

′
1(δ)(λ∗1(δ)− λ∗0(δ)) +

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))

}
where

lim
c1→+∞

2c1φ
′
1(δ) (135)

= lim
c1→+∞

(α + 4λ∗1(δ)b(δ))
(
a2(δ)d4V (δ)

dδ
+

λ∗0(δ)2c1λ∗1(δ)φ1(δ)

Λ

)
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

+
(α + 4λ∗0(δ)a(δ))

(
b2(δ)d4V (δ)

dδ
+

λ∗0(δ)2c1λ∗1(δ)φ0(δ)

Λ

)
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2


=

0

α2

= 0 ∀δ ∈ (0,
1

2
)

lim
c1→+∞

φ0(δ)

φ1(δ)
= lim

c1→+∞

α
2

+ 2λ∗1(δ)b(δ)
α
2

+ 2λ∗0(δ)a(δ)
= 1 <

b(δ)

a(δ)
∀δ ∈ (0,

1

2
) (136)

and notations a(δ) and b(δ) follow Section B.

Then (135)(136) and “λ̄′(0) < 0” =⇒

lim
c1→+∞

λ̄′(δ) < 0 ∀δ ∈ [0,
1

2
) (137)

We also assume that

λ∗1(δ1; c1) = Ω (λ∗1(δ2; c1)) (c1 → +∞) ∀δ1, δ2 ∈ [0,
1

2
] (138)

∫ 1−δ

0

λ∗1(δ′; c1)(4V (δ)−4V (1− δ′))φ1(δ′)dδ′ = Ω(Λ1(c1))(c1 → +∞) ∀δ ∈ (0, 1) (139)

which are the negation of λ∗1(δ1; c1) = o (λ∗1(δ2; c1)) (c1 → +∞) and c1λ
∗
1(δ; c1) = o(1)(c1 →

+∞).
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Then

λ̄(0) =
αλ∗1(0)

α + λ∗1(0)
(140)

λ̄(
1

2
) = λ∗1(

1

2
) (141)

then by (138) and Lemma 1,

lim
c1→+∞

λ̄(0)

λ̄(1
2
)

= lim
c1→+∞

α
λ∗1(0)

λ∗1( 1
2

)

α + λ∗1(0)
=
λ∗1(0)

λ∗1(1
2
)
> 1 (142)

Then we calculate that,

λ̄′′(
1

2
) =

d4V ( 1
2

)

dδ

2c2
1Λ1(α + 4λ∗1(1

2
)b(1

2
))

×

{
−4

d4V (1
2
)

dδ
b( 1

2
)

(∫ 1
2

0

λ∗1(δ′)φ1(δ′)dδ′

)
+
c1λ
∗
1(1

2
)α

2
− 2λ∗1(

1

2
)c1λ

∗
0(

1

2
)b(

1

2
)

}
︸ ︷︷ ︸

∗

(143)

so the sign of λ̄′′(1
2
) depends on the sign of the ∗ term in (143).

As by Lemma 1 and (139)

lim
c1→+∞

{
−4

d4V (1
2
)

dδ
b( 1

2
)

(∫ 1
2

0

λ∗1(δ′)φ1(δ′)dδ′

)
+
c1λ
∗
1(1

2
)α

2
− 2λ∗1(

1

2
)c1λ

∗
0(

1

2
)b(

1

2
)

}

= lim
c1→+∞

c1λ
∗
1(1

2
)α

2
> 0 (144)

then

lim
c1→+∞

λ̄′′(
1

2
) > 0 (145)

Then by (137)(142)(145), we conclude that for each fixed α, ∃c1
1(α), c2

1(α), c3
1(α) s.t.

λ̄′(δ) < 0 ∀δ ∈ [0,
1

2
) for ∀c1 > c1

1(α) (146)

λ̄(0) > λ̄(
1

2
) for ∀c1 > c2

1(α) (147)
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λ̄′′(
1

2
) > 0 for ∀c1 > c3

1(α) (148)

Then

c∗1(α) = max{c1
1(α), c2

1(α), c3
1(α)} (149)

(2) For each c1, since the following components are bounded:

0 <
d4V (δ)

dδ
<

1

r + α
∀δ ∈ [0, 1] (150)

0 ≤ λ∗1(δ) <
1

2c1(α + r)
∀δ ∈ [0, 1] (151)

0 ≤ a(δ) ≤ 1

2
∀δ ∈ [0, 1] (152)

0 ≤ b(δ) ≤ 1

2
∀δ ∈ [0, 1] (153)

=⇒

lim
α→+∞

λ̄′(δ) = lim
α→+∞

{
φ′1(δ)(λ∗1(δ)− λ∗0(δ)) +

1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))

}
(154)

= lim
α→+∞

a2(δ)
2c1

d4V (δ)
dδ

+
λ∗0(δ)λ∗1(δ)φ1(δ)

Λ
+ b2(δ)

2c1

d4V (δ)
dδ

+
λ∗0(δ)λ∗1(δ)φ0(δ)

Λ

α
+

lim
α→+∞

1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))︸ ︷︷ ︸
∗∗

= lim
α→+∞

1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))︸ ︷︷ ︸
∗∗

since

lim
α→+∞

φ0(δ)

φ1(δ)
= lim

α→+∞

α
2

+ 2λ∗1(δ)b(δ)
α
2

+ 2λ∗0(δ)a(δ)
= 1 <

b(δ)

a(δ)
∀δ ∈ (0,

1

2
) (155)

so

lim
α→+∞

λ̄′(δ) = lim
α→+∞

1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))︸ ︷︷ ︸
∗∗

< 0 ∀δ ∈ (0,
1

2
) (156)
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And it is trival that

lim
α→+∞

λ̄(0)

λ̄(1
2
)

= lim
α→+∞

α
λ∗1(0)

λ∗1( 1
2

)

α + λ∗1(0)
=
λ∗1(0)

λ∗1(1
2
)
> 1 (157)

lim
α→+∞

λ̄′′(
1

2
) = lim

α→+∞

λ∗1(1
2
)
d4V ( 1

2
)

dδ

4c1Λ1

> 0 (158)

Then by (156)(157)(158), we conclude that for each fixed c1, ∃α1(c1), α2(c1), α3(c1) s.t.

λ̄′(δ) < 0 ∀δ ∈ [0,
1

2
) for ∀α > α1(c1) (159)

λ̄(0) > λ̄(
1

2
) for ∀α > α2(c1) (160)

λ̄′′(
1

2
) > 0 for ∀α > α3(c1) (161)

Then

α∗(c1) = max{α1(c1), α2(c1), α3(c1)} (162)

F.3

λ̄′(δ) = φ′1(δ)(λ∗1(δ)− λ∗0(δ))︸ ︷︷ ︸
3∗

+
1

2c1

d4V (δ)

dδ︸ ︷︷ ︸
4∗

(φ0(δ)a(δ)− φ1(δ)b(δ)) (163)

The terms 3∗ and 4∗ are always positive, so we only focus on the sign of φ0(δ)a(δ)−φ1(δ)b(δ).

(1) For each α, by Lemma 1, ∃δ̂ ∈ (0, 1
2
) s.t.

lim
c1→0

φ0(δ)

φ1(δ)
= lim

c1→0

2λ∗1(δ)b(δ)

2λ∗0(δ)a(δ)
>
b(δ)

a(δ)
∀δ̂ < δ <

1

2
(164)

where the inequality “>” is by λ∗1(δ) > λ∗0(δ) for ∀δ ∈ (0, 1
2
) and 0 < a(δ̂) < a(δ).

Then ∃δ̂ ∈ (0, 1
2
) s.t.

lim
c1→0

λ̄′(δ) > 0 ∀δ̂ < δ <
1

2
(165)
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And we also assume that

λ∗1(δ1; c1) = Ω (λ∗1(δ2; c1)) (c1 → 0) ∀δ1, δ2 ∈ [0,
1

2
] (166)

which is the negation of λ∗1(δ1; c1) = o (λ∗1(δ2; c1)) (c1 → 0).

Then

lim
c1→0

λ̄(0)

λ̄(1
2
)

= lim
c1→0

α
λ∗1(0)

λ∗1( 1
2

)

α + λ∗1(0)
= 0 < 1 (167)

Since

0 < c1λ
∗
1(

1

2
)

=
1

2

∫ 1

1
2

λ∗0(δ′)

Λ0

(4V (δ′)−4V (
1

2
))φ0(δ′)dδ′

< (4V (1)−4V (0))
1

2

∫ 1

1
2

λ∗0(δ′)

Λ0

φ0(δ′)dδ′

<
1

4(α + r)
(168)

and by Lemma 1

lim
c1→0

λ∗0(
1

2
) = +∞ (169)

then the dominant term in term “∗” of (143) is “−2λ∗1(1
2
)c1λ

∗
0(1

2
)b(1

2
)”.

So we have

lim
c1→0

λ̄′′(
1

2
) = lim

c1→0

d4V ( 1
2

)

dδ

2c2
1Λ1(α + 4λ∗1(1

2
)b(1

2
))

{
−2λ∗1(

1

2
)c1λ

∗
0(

1

2
)b(

1

2
)

}
< 0 (170)

Then by (165)(167)(170), we conclude that for each fixed α, ∃c4
1(α), c5

1(α), c6
1(α) s.t.

∃δ̂ ∈ (0, 1
2
) s.t.

λ̄′(δ) > 0 ∀δ̂ < δ <
1

2
for ∀c1 < c4

1(α) (171)

λ̄(0) < λ̄(
1

2
) for ∀c1 < c5

1(α) (172)

λ̄′′(
1

2
) < 0 for ∀c1 < c6

1(α) (173)
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Then

c∗∗1 (α) = max{c4
1(α), c5

1(α), c6
1(α)} (174)

(2) For each c1, similar to the case of “fixed α”, to discuss the sign of λ̄′(δ), we only focus

on the sign of φ0(δ)a(δ)− φ1(δ)b(δ).

∃δ̂ ∈ (0, 1
2
) s.t.

lim
α→0

φ0(δ)

φ1(δ)
= lim

α→0

2λ∗1(δ)b(δ)

2λ∗0(δ)a(δ)
>
b(δ)

a(δ)
∀δ̂ < δ <

1

2
(175)

where the inequality “>” is by λ∗1(δ) > λ∗0(δ) for ∀δ ∈ (0, 1
2
) and 0 < a(δ̂) < a(δ).

Then ∃δ̂ ∈ (0, 1
2
) s.t.

lim
α→0

λ̄′(δ) > 0 ∀δ̂ < δ <
1

2
(176)

To compare λ̄(0) and λ̄(1
2
), similarly

lim
α→0

λ̄(0)

λ̄(1
2
)

= lim
α→0

α
λ∗1(0)

λ∗1( 1
2

)

α + λ∗1(0)
= 0 < 1 (177)

Also, as α→ 0, the term “
c1λ∗1( 1

2
)α

2
→ 0” in “∗” term of (143), so it is trival that

lim
α→0

λ̄′′(
1

2
) < 0 (178)

Then by (176)(177)(178), we conclude that for each fixed c1, ∃α4(c1), α5(c1), α6(c1) s.t.

∃δ̂ ∈ (0, 1
2
) s.t.

λ̄′(δ) > 0 ∀δ̂ < δ <
1

2
for ∀α < α4(c1) (179)

λ̄(0) < λ̄(
1

2
) for ∀α < α5(c1) (180)

λ̄′′(
1

2
) < 0 for ∀α < α6(c1) (181)

Then

α∗∗(c1) = max{α4(c1), α5(c1), α6(c1)} (182)

�
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G Proposition 6

In section G.2, we give three lemmas, the conclusions of which will be used in the main proof

in section G.1.

G.1 Main proof of Proposition 6

Define the following normed linear spaces: ΛS1 = {λS1 (δ) : λS1 (δ) ∈ C1[0, 1];λS1 (δ) ≥
0 and λS

′
1 (δ) ≤ 0, ∀δ ∈ [0, 1]}, ΦS1 = {φS1 (δ) : φS1 (δ) ∈ C1[0, 1]; 0 ≤ φS1 (δ) ≤ 1 and φS1

′
(δ) ≥

0,∀δ ∈ [0, 1];
∫ 1

0
φS1 (δ)dδ = 1

2
}, all with the norm ‖f‖ = max

0≤δ≤1
|f(δ)|. We can further trans-

form the original social welfare problem to a new one with two control variables λS1 (δ) ∈ ΛS1

and φS1 (δ) ∈ ΦS1, and transfer the original equilibrium constraint as follows:

New Problem:

[P ] max
λS1 (δ)∈ΛS1,φ

S
1 (δ)∈ΦS1

W =
∫ 1

0
(δ − 2c1λ

S
1

2
(δ))φS1 (δ)dδ

s.t.

H(λS1 (δ), φS1 (δ))

= 2αφS1 (δ)

∫ 1

0

λS1 (δ)φS1 (δ)dδ + 2φS1 (δ)λS1 (δ)

∫ 1−δ

0

λS1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS1 (1− δ)
∫ δ

0

λS1 (δ′)φS1 (δ′)dδ′ − α
∫ 1

0

λS1 (δ)φS1 (δ)dδ − 2λS1 (1− δ)
∫ δ

0

λS1 (δ′)φS1 (δ′)dδ′

≡ 0

If there exists a subset 4+ ⊂ [1
2
, 1] s.t. λS∗1 (δ) > 0,∀δ ∈ 4+,20 and with uniform distribution

of δ on [0, 1], the measure of subset 4+ is
∫ 1

0
1{δ∈4+}(δ)dδ = m+, we choose ε̂ > 0 and

δε̂2 ∈ (1
2
, 1) such that the Lebesgue measure of the new subset D = 4+ ∩ [1

2
, δε̂2 ] satisfies

µ[D] = µ[4+ ∩ [1
2
, δε̂2 ]] = ε̂2 < m+.

Based on the ε̂ and the new subset D chosen above, we can construct a new solution

204+ may be a union of several disjoint subintervals of [0, 1].
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point
(
λNS∗1 (δ), φNS∗1 (δ)

)
as follows:

λNS∗1 (δ) = λS∗1 (δ) + hλS∗1
(δ) (183)

where

hλS∗1
(δ) =

{
−ε̂λS∗1 (δ), ∀δ ∈ D
0, ∀δ ∈ [0, 1]nD

and

φNS∗1 (δ) = φS∗1 (δ) + hφS1 (δ) (184)

where the incremental hφS1 (δ) is obtained from the following equation given the incremental
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hλS∗1
(δ) chosen above:

∂H

∂φS1 (δ)
hφS1 (δ) +

∂H

∂λS∗1 (δ)
hλS∗1

(δ) (185)

= lim
m→0

{
H(λS∗1 (δ), φS1 (δ) +mhφS1 (δ))−H(λS∗1 (δ), φS1 (δ))

m

+
H(λS∗1 (δ) +mhλS∗1

(δ), φS1 (δ))−H(λS∗1 (δ), φS1 (δ))

m

}

= 2αφS1 (δ)

∫ 1

0

λS∗1 (δ)hφS1 (δ)dδ + 2αhφS1 (δ)

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)hφS1 (δ′)dδ′ + 2hφS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)hφS1 (δ′)dδ′ + 2hφS1 (δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

− α
∫ 1

0

λS∗1 (δ)hφS1 (δ)dδ − 2λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)hφS1 (δ′)dδ′

+ 2αφS1 (δ)

∫ 1

0

hλS∗1
(δ)φS1 (δ)dδ + 2φS1 (δ)hλS∗1

(δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)φS1 (δ′)dδ′ + 2φS1 (δ)λS∗1 (1− δ)

∫ δ

0

hλS∗1
(δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)hλS∗1
(1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ − α
∫ 1

0

hλS∗1
(δ)φS1 (δ)dδ

− 2λS∗1 (1− δ)
∫ δ

0

hλS∗1
(δ′)φS1 (δ′)dδ′ − 2hλS∗1

(1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

≡ 0 on δ ∈ [0, 1]

Then we construct another subset B ⊂ [0, 1
2
] which is symmetric with respect to the subset

D chosen above, i.e. for ∀δ ∈ B, 1− δ ∈ D and for ∀δ ∈ D, 1− δ ∈ B. We will show the new

solution point
(
λNS∗1 (δ), φNS∗1 (δ)

)
dominates the old one

(
λS∗1 (δ), φS∗1 (δ)

)
in the sense that

the new point generates a higher value of social welfare without violating the constraint. In

the proof, we need to use the conclusions of Lemma 2, Lemma 3 and Lemma 4, the proof of

which will be given after the main proof.
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Given the chosen hλS∗1
(δ) above and the obtained hφS1 (δ) from ∂H

∂φS1 (δ)
hφS1 (δ)+ ∂H

∂λS∗1 (δ)
hλS∗1

(δ) ≡
0,∀δ ∈ [0, 1] accordingly, the marginal change in the value of objective function (the social

welfare) taking the chosen ε̂ to zero is:

lim
ε̂→0

1

ε̂

(
∂W

∂φS1 (δ)
hφS1 (δ) +

∂W

∂λS∗1 (δ)
hλS∗1

(δ)

)
= lim

ε̂→0

1

ε̂

∫ 1

0

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ + 4c1

∫
D

λS∗1

2
(δ′)φS1 (δ′)dδ′

= lim
ε̂→0

1

ε̂

∫
B∪D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ + 4c1

∫
D

λS∗1

2
(δ′)φS1 (δ′)dδ′ (by Lemma 2) (186)

Also by Lemma 2 and Lemma 3:

lim
ε̂→0

∫
B∪D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ

= lim
ε̂→0

(∫
B

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ +

∫
D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ

)
= lim

ε̂→0

(
−
∫
B

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (1− δ)dδ +

∫
D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ

)
= lim

ε̂→0

(
−
∫
D

(1− δ − 2c1λ
S∗
1

2
(1− δ))hφS1 (δ)dδ +

∫
D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ

)
= lim

ε̂→0

(∫
D

(2δ − 1 + 2c1λ
S∗
1

2
(1− δ)− 2c1λ

S∗
1

2
(δ))hφS1 (δ)dδ

)
> 0 (D ⊂ [

1

2
, 1] and λS∗1

′
(δ) < 0) (187)

(186)(187) lead to:

lim
ε̂→0

1

ε̂

(
∂W

∂φS1 (δ)
hφS1 (δ) +

∂W

∂λS∗1 (δ)
hλS∗1

(δ)

)
> 0 (188)

Then by Lemma 4, any point
(
λS1 (δ), φS1 (δ)

)
with λS1 (δ) > 0,∀δ ∈ 4+ where 4+ ⊂ [1

2
, 1]

cannot be a local extremum. �
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G.2 Three Lemmas

Lemma 2: The incremental hφS1 (δ) satisfies

hφS1 (δ) =

{
O(ε̂), ∀δ ∈ B ∪D
o(ε̂), ∀δ ∈ [0, 1]n(B ∪D)

and

lim
ε̂→0

hφS1 (δ)

{
> 0, ∀δ ∈ D
< 0, ∀δ ∈ B

Proof:

We use guess and verify approach. We guess hφS1 (δ) = O(ε̂),∀δ ∈ B ∪D, and hφS1 (δ) =

o(ε̂),∀δ ∈ [0, 1]n(B∪D). Divide both sides of ∂H
∂φS1 (δ)

hφS1 (δ)+ ∂H
∂λS∗1 (δ)

hλS∗1
(δ) ≡ 0 by ε̂ and take

ε̂ to zero, we get:

lim
ε̂→0

{
2αφS1 (δ)

∫ 1

0

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ + 2α

hφS1 (δ)

ε̂

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′ + 2

hφS1 (δ)

ε̂
λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′ + 2

hφS1 (δ)

ε̂
λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

− α
∫ 1

0

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ − 2λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

+ 2αφS1 (δ)

∫ 1

0

hλS∗1
(δ)

ε̂
φS1 (δ)dδ + 2φS1 (δ)

hλS∗1
(δ)

ε̂

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ + 2φS1 (δ)λS∗1 (1− δ)

∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

+ 2φS1 (δ)
hλS∗1

(1− δ)
ε̂

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ − α
∫ 1

0

hλS∗1
(δ′)

ε̂
φS1 (δ)dδ

−2λS∗1 (1− δ)
∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ − 2

hλS∗1
(1− δ)
ε̂

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
}

≡ 0 on δ ∈ [0, 1] (189)
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(1) For ∀δ ∈ [0, 1]n(B ∪D), the value of left hand side (LHS) of (189) satisfies:

LHS1

= lim
ε̂→0

{
2αφS1 (δ)

∫
B∪D

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ + 2α

hφS1 (δ)

ε̂

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

+ 2
hφS1 (δ)

ε̂
λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + 2φS1 (δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

+ 2
hφS1 (δ)

ε̂
λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ − α
∫
B∪D

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ

− 2λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

− 2αφS1 (δ)

∫
D

λS∗1 (δ)φS1 (δ)dδ + 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (1− δ)
∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ + α

∫
D

λS∗1 (δ)φS1 (δ)dδ

−2λS∗1 (1− δ)
∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

}
= lim

ε̂→0

{
α(2φS1 (δ)− 1)

∫
B∪D

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ

+ 2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

︸ ︷︷ ︸
(*-1)

+ 2
hφS1 (δ)

ε̂

(
λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

︸ ︷︷ ︸
(*-2)

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′ − 2φS1 (1− δ)λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

− α(2φS1 (δ)− 1)

∫
D

λS∗1 (δ)φS1 (δ)dδ

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ − 2φS1 (1− δ)λS∗1 (1− δ)

∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

≡ 0 on δ ∈ [0, 1]n(B ∪D) (190)
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Denote the maximum of
∣∣∣λS∗1 (δ)hφS1 (δ)

∣∣∣ over B∪D as A1, the maximum of
∣∣λS∗1 (δ)φS1 (δ)

∣∣ over

D as A2, the maximum of
∣∣∣hλS∗1

(δ)φS1 (δ)
∣∣∣ over D as A3, then except for the (∗− 1) + (∗− 2)

term in equation (190), all the other terms are o(ε̂) terms:

lim
ε̂→0

∣∣∣∣α(2φS1 (δ)− 1)

∫
B∪D

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ

∣∣∣∣
≤ lim

ε̂→0
2
∣∣α(2φS1 (δ)− 1)

∣∣A1ε̂
2 1

ε̂
= lim

ε̂→0
2
∣∣α(2φS1 (δ)− 1)

∣∣A1ε̂ = 0 (191)

lim
ε̂→0

∣∣∣∣2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′ − 2φS1 (1− δ)λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′
∣∣∣∣

≤ lim
ε̂→0

(∣∣2φS1 (δ)λS∗1 (δ)
∣∣+
∣∣2φS1 (1− δ)λS∗1 (1− δ)

∣∣)A1ε̂
2 1

ε̂

= lim
ε̂→0

(∣∣2φS1 (δ)λS∗1 (δ)
∣∣+
∣∣2φS1 (1− δ)λS∗1 (1− δ)

∣∣)A1ε̂

= 0 (192)

lim
ε̂→0

∣∣∣∣−α(2φS1 (δ)− 1)

∫
D

λS∗1 (δ)φS1 (δ)dδ

∣∣∣∣ ≤ lim
ε̂→0

∣∣α(2φS1 (δ)− 1)
∣∣A2ε̂

2 = 0 (193)

lim
ε̂→0

∣∣∣∣2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ − 2φS1 (1− δ)λS∗1 (1− δ)

∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

∣∣∣∣
≤ lim

ε̂→0

(∣∣2φS1 (δ)λS∗1 (δ)
∣∣+
∣∣2φS1 (1− δ)λS∗1 (1− δ)

∣∣)A3ε̂
2 1

ε̂

= lim
ε̂→0

(∣∣2φS1 (δ)λS∗1 (δ)
∣∣+
∣∣2φS1 (1− δ)λS∗1 (1− δ)

∣∣)A3ε̂

= 0 (194)

Then to make equation (190) still apply, we conclude that

lim
ε̂→0

hφS1 (δ)

ε̂
= 0, ∀δ ∈ [0, 1]n(B ∪D) (195)
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(2) For ∀δ ∈ D, the value of the left hand side (LHS) of (189) equals to the summation of

LHS value in case (1) (LHS1) and another extra term with incremental hλS∗1
(δ) outside the

integrals:

LHS2

= LHS1 + lim
ε̂→0

2φS1 (δ)
hλS∗1

(δ)

ε̂

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

= lim
ε̂→0

2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

− lim
ε̂→0

2φS1 (δ)
ε̂λS∗1 (δ)

ε̂

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + o(ε̂)

= lim
ε̂→0

2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

− lim
ε̂→0

2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + o(ε̂)

≡ 0 on δ ∈ D (196)

Then we conclude that

lim
ε̂→0

hφS1 (δ) = O(ε̂) and lim
ε̂→0

hφS1 (δ) > 0, ∀δ ∈ D (197)

(3) For ∀δ ∈ B, the value of the left hand side (LHS) of (189) equals to the summation of

LHS value in case (1) (LHS1) and some extra terms with incremental hλS∗1
(1 − δ) outside

75



the integrals:

LHS3

= LHS1 − lim
ε̂→0

2φS1 (1− δ)hλS∗1
(1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

= lim
ε̂→0

2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)
− lim

ε̂→0
2φS1 (1− δ)−ε̂λ

S∗
1 (1− δ)
ε̂

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + o(ε̂)

= lim
ε̂→0

2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

+ lim
ε̂→0

2φS1 (1− δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + o(ε̂)

≡ 0 on δ ∈ B (198)

Then we conclude that

lim
ε̂→0

hφS1 (δ) = O(ε̂) and lim
ε̂→0

hφS1 (δ) < 0, ∀δ ∈ B (199)

�

Lemma 3: The incremental hφS1 (δ) satisfies

hφS1 (δ) + hφS1 (1− δ) = 0, ∀δ ∈ [0, 1] (200)

given any form of incremental hλS∗1
(δ).

Proof:

By ∂H
∂φS1 (δ)

hφS1 (δ) + ∂H
∂λS∗1 (δ)

hλS∗1
(δ) ≡ 0,∀δ ∈ [0, 1], we use:

∂H

∂φS1 (δ)
hφS1 (δ) +

∂H

∂λS∗1 (δ)
hλS∗1

(δ) +
∂H

∂φS1 (δ)
hφS1 (1− δ) +

∂H

∂λS∗1 (δ)
hλS∗1

(1− δ) = 0,∀δ ∈ [0, 1]
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then we can trivally get21:

hφS1 (δ) + hφS1 (1− δ) = 0 ∀δ ∈ [0, 1] (201)

for any hλS∗1
(δ). �

Lemma 4: Let f achieve a local extremum subject to H(x) = θ at the point x0 and assume

that f and H are continuously Fréchet differentiable in an open set containing x0 and that

x0 is a regular point of H. Then f ′(x0)h = 0 for all h satisfying H ′(x0)h = θ. (This lemma

is from “Optimization by Vector Space Methods” by Luenberger (1973), page 242.)

H Proposition 7

By proof of Proposition 6, the cost function C(λ) = c1λ
2 only appear in conditions (186)(187).

Then if condition (33) applies:

C ′(λ)

{
≥ 0 δ = 0;

> 0 ∀δ ∈ (0, λub].
(202)

then (186) becomes:

lim
ε̂→0

1

ε̂

(
∂W

∂φS1 (δ)
hφS1 (δ) +

∂W

∂λS∗1 (δ)
hλS∗1

(δ)

)
= lim

ε̂→0

1

ε̂

∫ 1

0

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ + 2

∫
D

C ′(λS∗1 (δ′))λS∗1 (δ′)φS1 (δ′)dδ′

= lim
ε̂→0

1

ε̂

∫
B∪D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ + 2

∫
D

C ′(λS∗1 (δ′))λS∗1 (δ′)φS1 (δ′)dδ′

(by 2 in Section G.2) (203)

where the second term is still positive since D ⊂ [1
2
, 1] and C ′(λ) > 0 ∀δ ∈ (0, λub].

21The result is similar as in (97).
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Also by 2 and 3 in Section G.2:

lim
ε̂→0

∫
B∪D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ

= lim
ε̂→0

(∫
B

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ +

∫
D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ

)
= lim

ε̂→0

(
−
∫
B

(δ − 2C(λS∗1 (δ)))hφS1 (1− δ)dδ +

∫
D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ

)
= lim

ε̂→0

(
−
∫
D

(1− δ − 2C(λS∗1 (1− δ)))hφS1 (δ)dδ +

∫
D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ

)
= lim

ε̂→0

(∫
D

(2δ − 1 + 2C(λS∗1 (1− δ))− 2C(λS∗1 (δ)))hφS1 (δ)dδ

)
> 0 (C ′(λ) ≥ 0, D ⊂ [

1

2
, 1] and λS∗1

′
(δ) < 0) (204)

(203)(204) still lead to:

lim
ε̂→0

1

ε̂

(
∂W

∂φS1 (δ)
hφS1 (δ) +

∂W

∂λS∗1 (δ)
hλS∗1

(δ)

)
> 0 (205)

Then we can still get the contradiction, then we conclude that any λS∗1 (δ) that satisfies there

exists subset 4+ ⊂ [1
2
, 1] where λS∗1 (δ) > 0,∀δ ∈ 4+ cannot be the social optimal solution.

I Solution to the social planner problem with different

cost functions

I.1 Convex cost function C(λ) = c1λ
2

Social Optimal Solution

∂L

∂λ1(δ)
=

α
2
− αδ + αc1λ

2
1(δ)− α(α + λ1(δ))2c1λ1(δ)

(α + λ1(δ))2
= 0 (206)

and
∂2L

∂λ2
1(δ)

=
−2c1α

3 − α(1− 2δ)

(α + λ1(δ))4
< 0 (207)
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Then solutions is:

λS∗1 (δ) =
−2c1α

2 +
√

4c2
1α

4 + 4c1α2(1
2
− δ)

2c1α
∀δ ∈ [0,

1

2
), λS∗1 (δ) ≡ 0 ∀δ ∈ [

1

2
, 1]

(208)

Competitive Equilibrium Solution

λ∗1(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0
(4V (δ′)−4V (δ))φ0(δ′)dδ′

2c1

(209)

λ∗0(δ) =

∫ δ
0

λ∗1(δ′)

Λ1
(4V (δ)−4V (δ′))φ1(δ′)dδ′

2c1

(210)

I.2 Linear cost function C(λ) = c1λ

Social Optimal Solution

∂L

∂λ1(δ)
=

α
2
− αδ + αC(λ1(δ))− α(α + λ1(δ))C ′(λ1(δ))

(α + λ1(δ))2
=

α
2
− c1α

2 − αδ
(α + λ1(δ))2

(211)

Then if c1α <
1
2
, the solution is:

λS1
∗
(δ) =

{
λub if δ ≤ 1

2
− c1α;

0 if δ > 1
2
− c1α.

If c1α ≥ 1
2
,

λS1
∗
(δ) ≡ 0 ∀δ ∈ [0, 1] (212)

Competitive Equilibrium Solution

For competitive equilibrium solutions, given parameters c1, α, r, ∃δ∗(c1, α, r), s.t. λ∗1(δ) = λub

for ∀δ ∈ [0, δ∗(c1, α, r)] and λ∗1(δ) = 0 for ∀δ ∈ (δ∗(c1, α, r), 1]; by symmetry, λ∗0(δ) = λub

for ∀δ ∈ [1 − δ∗(c1, α, r), 1] and λ∗0(δ) = 0 for ∀δ ∈ [0, 1 − δ∗(c1, α, r)). For simplicity to

compare with social optimal solution, we give numerical case such that 1− δ∗(c1, α, r) <
1
2
<

δ∗(c1, α, r), i.e. there exists intermediation behavior in CE equilibrium.
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I.3 Social optimal solution for concave cost function C(λ) = c1λ
p,

p ∈ (0, 1)

∂L

∂λ1(δ)
=

α
2
− αδ + αC(λ1(δ))− α(α + λ1(δ))C ′(λ1(δ))

(α + λ1(δ))2

=
α(1

2
− δ + (1− p)c1λ1

p(δ)− αc1pλ1
p−1(δ))

(α + λ1(δ))2
(213)

• Case 1: λS1
∗
(δ) that satisfies the following equation is a stationary point:

1

2
− δ + (1− p)c1λ1

p(δ)− αc1pλ1
p−1(δ) = 0 (214)

Since

∂2L

∂λ2
1(δ)

=
α
(
λp−1

1 (δ)αc1p(p
2 − 3p+ 4) + λp−2

1 (δ)α2c1p(1− p)2
)

(α + λ1(δ))3

+
α (λp1(δ)c1(1− p)(p− 2) + (2δ − 1))

(α + λ1(δ))3

=
α
(

(αc1λ
p−1
1 (δ)− (1

2
− δ))p+ αc1λ

p−1
1 (δ)(1− p)2 + (1

2
− δ)α(1−p)2

λ1(δ)

)
(α + λ1(δ))3

> 0 by (214)

Then the stationary point is local min point.

• Case 2: Since 0 < p < 1, then λ1(δ) ≡ 0 is a local max point, since ∂L
∂λ1(δ)

|λ1(δ)=0 < 0

∀δ ∈ [0, 1
2
), then the social welfare trivally W ∗ = 5 for r = 0.05.

• Case 3: λ1(δ) ≡ λub is a local max point if 1
2
− δ + (1− p)c1(λub)

p − αc1p(λ
ub)

p−1
> 0

for ∀δ ∈ [0, 1
2
).

The social optimal solution for concave cost function is either λS1
∗
(δ) = λub or λS1

∗
(δ) = 0

on [0, 1
2
) depending on parameters c1, α, r, p. (Also need to verify expost that the generated

4V S(δ) satisfies d4V (δ)
dδ

> 0 for ∀δ ∈ [0, 1].)

Numerical Example for Case 2: λub = 0.3, c1 = 2, α = 0.75, p = 0.5 (λ1(δ) ≡ 0 is a
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local max point but λ1(δ) ≡ λub is not local max point)
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Figure 15: Case 2: Social optimal search intensities and densities for concave cost function
C(λ) = c1λ

p (λub = 0.3, c1 = 2, α = 0.75, p = 0.5)

Numerical Example for Case 3: λub = 1, c1 = 1, α = 0.05, p = 0.5 (Both λ1(δ) ≡ 0 and

λ1(δ) ≡ λub are local max points, but the marginal loss from deviating from λ1(δ) ≡ λub is

large in this case)
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Figure 16: Case 3: Social optimal search intensities and densities for concave cost function
C(λ) = c1λ

p (λub = 1, c1 = 1, α = 0.05, p = 0.5)
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I.4 Social optimal solution for C(λ) = c1λ
2 + c2λ (c1 < 0, c2 > 0)

Finally, we give a numerical example for C(λ) = c1λ
2 + c2λ (c1 < 0, c2 > 0 to double check

the sufficient condition for λS1
∗
(δ) ≡ 0 on [1

2
, 1].

C ′(λ) ≥ 0 ∀λ ∈ [0, λub] (215)

=⇒
c2 > −2c1λ

ub (216)

• Case 1: The analytical stationary point satisfies:

∂L

∂λ1(δ)
=

α
2
− αδ − α2c2 − 2α2c1λ1(δ)− αc1λ

2
1(δ)

(α + λ1(δ))2
= 0 (217)

=⇒

λ1
∗(δ) =

−2αc1 +
√

4α2c2
1 − 4c1(αc2 + δ − 1

2
)

2c1

,

∀δ ∈ [0,
1

2
] (require α2c1 − αc2 +

1

2
≤ 0) (218)

and

∂2L

∂λ2
1(δ)

=
2α2c2 − 2α3c1 + α(2δ − 1)

(α + λ1(δ))4
≥ α + α(2δ − 1)

(α + λ1(δ))4
≥ 0 (by α2c1 − αc2 +

1

2
≤ 0)

(219)

so the stationary point is a local min point.

• Case 2: If αc2 ≥ 1
2
, then λ1

∗(δ) ≡ 0 ∀δ ∈ [0, 1
2
] is local maximum point.

• Case 3: If αc2 + 2αc1λ
ub + c1(λub)2 ≤ 0, then λ1

∗(δ) ≡ λub ∀δ ∈ [0, 1
2
] is local maximum

point.

Numerical Example for Case 2: λub = 2, c1 = −0.5, c2 = 10, α = 0.5.

Numerical Example for Case 3: λub = 1.5, c1 = −0.5, c2 = 2, α = 0.05.
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Figure 17: Case 2: Social optimal search intensities and densities for convex cost function
C(λ) = c1λ

2 + c2λ (λub = 2, c1 = −0.5, c2 = 10, α = 0.5)
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Figure 18: Case 3: Social optimal search intensities and densities for convex cost function
C(λ) = c1λ

2 + c2λ (λub = 1.5, c1 = −0.5, c2 = 2, α = 0.05)
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